首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an aging society, research involving neurodegenerative disorders is of paramount importance. Over the past few years, research on Alzheimer's and Parkinson's diseases has made tremendous progress. Experimental studies, however, rely mostly on transgenic animal models, preferentially using mice. Although experiments on mice have enormous advantages, they also have some inherent limitations, some of which can be overcome by the use of Drosophila melanogaster as an experimental animal. Among the major advantages of using the fly is its small genome, which can also be modified very easily. The fact that its genome lends itself to diverse alterations (e. g. mutagenesis, transposons) has made the fly a useful organism to perform large‐scale and genome‐wide screening approaches. This has opened up an entirely new field of experimental research aiming to elucidate genetic interactions and screen for modifiers of disease processes in vivo. Here, we provide a brief overview of how flies can be used to analyze molecular mechanisms underlying human neurodegenerative diseases.  相似文献   

2.
We recently found severe noradrenaline deficits throughout the thalamus of patients with Parkinson's disease [C. Pifl, S. J. Kish and O. Hornykiewicz Mov Disord. 27, 2012, 1618.]. As this noradrenaline loss was especially severe in nuclei of the motor thalamus normally transmitting basal ganglia motor output to the cortex, we hypothesized that this noradrenaline loss aggravates the motor disorder of Parkinson's disease. Here, we analysed noradrenaline, dopamine and serotonin in motor (ventrolateral and ventroanterior) and non‐motor (mediodorsal, centromedian, ventroposterior lateral and reticular) thalamic nuclei in MPTP‐treated monkeys who were always asymptomatic; who recovered from mild parkinsonism; and monkeys with stable, either moderate or severe parkinsonism. We found that only the symptomatic parkinsonian animals had significant noradrenaline losses specifically in the motor thalamus, with the ventroanterior motor nucleus being affected only in the severe parkinsonian animals. In contrast, the striatal dopamine loss was identical in both the mild and severe symptom groups. MPTP‐treatment had no significant effect on noradrenaline in non‐motor thalamic nuclei or dopamine and serotonin in any thalamic subregion. We conclude that in the MPTP primate model, loss of noradrenaline in the motor thalamus may also contribute to the clinical expression of the parkinsonian motor disorder, corroborating experimentally our hypothesis on the role of thalamic noradrenaline deficit in Parkinson's disease.  相似文献   

3.
Intra‐neuronal metabolism of dopamine (DA) begins with production of 3,4‐dihydroxyphenylacetaldehyde (DOPAL), which is toxic. According to the ‘catecholaldehyde hypothesis,’ DOPAL destroys nigrostriatal DA terminals and contributes to the profound putamen DA deficiency that characterizes Parkinson's disease (PD). We tested the feasibility of using post‐mortem patterns of putamen tissue catechols to examine contributions of altered activities of the type 2 vesicular monoamine transporter (VMAT2) and aldehyde dehydrogenase (ALDH) to the increased DOPAL levels found in PD. Theoretically, the DA : DOPA concentration ratio indicates vesicular uptake, and the 3,4‐dihydroxyphenylacetic acid : DOPAL ratio indicates ALDH activity. We validated these indices in transgenic mice with very low vesicular uptake (VMAT2‐Lo) or with knockouts of the genes encoding ALDH1A1 and ALDH2 (ALDH1A1,2 KO), applied these indices in PD putamen, and estimated the percent decreases in vesicular uptake and ALDH activity in PD. VMAT2‐Lo mice had markedly decreased DA:DOPA (50 vs. 1377, p < 0.0001), and ALDH1A1,2 KO mice had decreased 3,4‐dihydroxyphenylacetic acid:DOPAL (1.0 vs. 11.2, p < 0.0001). In PD putamen, vesicular uptake was estimated to be decreased by 89% and ALDH activity by 70%. Elevated DOPAL levels in PD putamen reflect a combination of decreased vesicular uptake of cytosolic DA and decreased DOPAL detoxification by ALDH.

  相似文献   


4.
Mutations in leucine‐rich repeat kinase 2 (LRRK2) are the most common cause of dominant‐inherited Parkinson's disease (PD), and yet we do not fully understand the physiological function(s) of LRRK2. Various components of the clathrin machinery have been recently found mutated in familial forms of PD. Here, we provide molecular insight into the association of LRRK2 with the clathrin machinery. We report that through its GTPase domain, LRRK2 binds directly to clathrin‐light chains (CLCs). Using genome‐edited HA‐LRRK2 cells, we localize LRRK2 to endosomes on the degradative pathway, where it partially co‐localizes with CLCs. Knockdown of CLCs and/or LRRK2 enhances the activation of the small GTPase Rac1, leading to alterations in cell morphology, including the disruption of neuronal dendritic spines. In Drosphila, a minimal rough eye phenotype caused by overexpression of Rac1, is dramatically enhanced by loss of function of CLC and LRRK2 homologues, confirming the importance of this pathway in vivo. Our data identify a new pathway in which CLCs function with LRRK2 to control Rac1 activation on endosomes, providing a new link between the clathrin machinery, the cytoskeleton and PD.  相似文献   

5.
腹腔注射百草枯构建小鼠肺纤维化模型   总被引:3,自引:0,他引:3  
目的:探讨百草枯一次性腹腔注射致小鼠肺纤维化的病理改变及半数致死剂量(LD50),进而制备肺纤维化病理改变稳定的百草枯中毒小鼠肺纤维化模型。方法:60只正常雌性C57BL/6J小鼠被随机分为6组,10只/组,分别为正常对照组及百草枯给药30、40、50、60和80 mg/kg组,所有小鼠于造模后28 d处死,取其左肺用于病理观察(HE染色),并计算LD50及各组肺纤维化Ashcroft评级。结果:至观察期28 d,小鼠一次性腹腔注射百草枯溶液的LD50为55.1923 mg/kg;各染毒组均出现不同程度的肺纤维化改变,且注射剂量越高,肺纤维化病变越严重,但早期死亡率亦越高。结论:一次性腹腔注射百草枯可制备小鼠肺纤维化模型,40和50 mg/kg为较合适的造模剂量。  相似文献   

6.
7.
8.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an efficient neurosurgical treatment for advanced Parkinson's disease. Non‐invasive metabolic neuroimaging during the course of DBS in animal models may contribute to our understanding of its action mechanisms. Here, DBS was adapted to in vivo proton magnetic resonance spectroscopy at 11.7 T in the rat to follow metabolic changes in main basal ganglia structures, the striatum, and the substantia nigra pars reticulata (SNr). Measurements were repeated OFF and ON acute and subchronic (7 days) STN‐DBS in control and parkinsonian (6‐hydroxydopamine lesion) conditions. Acute DBS reversed the increases in glutamate, glutamine, and GABA levels induced by the dopamine lesion in the striatum but not in the SNr. Subchronic DBS normalized GABA in both the striatum and SNr, and glutamate in the striatum. Taurine levels were markedly decreased under subchronic DBS in the striatum and SNr in both lesioned and unlesioned rats. Microdialysis in the striatum further showed that extracellular taurine was increased. These data reveal that STN‐DBS has duration‐dependent metabolic effects in the basal ganglia, consistent with development of adaptive mechanisms. In addition to counteracting defects induced by the dopamine lesion, prolonged DBS has proper effects independent of the pathological condition.

  相似文献   


9.
10.
Abnormal autophagy may contribute to neurodegeneration in Parkinson's disease (PD). However, it is largely unknown how autophagy is dysregulated by oxidative stress (OS), one of major pathogenic causes of PD. We recently discovered the potential autophagy regulator gene family including Tnfaip8/Oxi‐α, which is a mammalian target of rapamycin (mTOR) activator down‐regulated by OS in dopaminergic neurons (J. Neurochem., 112, 2010 , 366). Here, we demonstrate that the OS‐induced Tnfaip8 l1/Oxi‐β could increase autophagy by a unique mechanism that increases the stability of tuberous sclerosis complex 2 (TSC2), a critical negative regulator of mTOR. Tnfaip8 l1/Oxi‐β and Tnfaip8/Oxi‐α are the novel regulators of mTOR acting in opposition in dopaminergic (DA) neurons. Specifically, 6‐hydroxydopamine (6‐OHDA) treatment up‐regulated Tnfaip8 l1/Oxi‐β in DA neurons, thus inducing autophagy, while knockdown of Tnfaip8 l1/Oxi‐β prevented significantly activation of autophagic markers by 6‐OHDA. FBXW5 was identified as a novel binding protein for Tnfaip8 l1/Oxi‐β. FBXW5 is a TSC2 binding receptor within CUL4 E3 ligase complex, and it promotes proteasomal degradation of TSC2. Thus, Tnfaip8 l1/Oxi‐β competes with TSC2 to bind FBXW5, increasing TSC2 stability by preventing its ubiquitination. Our data show that the OS‐induced Tnfaip8 l1/Oxi‐β stabilizes TSC2 protein, decreases mTOR phosphorylation, and enhances autophagy. Therefore, altered regulation of Tnfaip8 l1/Oxi‐β may contribute significantly to dysregulated autophagy observed in dopaminergic neurons under pathogenic OS condition.

  相似文献   


11.
Environmental exposure, genetic modification, and aging are considered risky for Parkinson's disease (PD). How these risk factors cooperate to induce progressive neurodegeneration in PD remains largely unknown. Paraquat is an herbicide commonly used for weed and grass control. Exposure to paraquat is associated with the increased incidence of PD. In contrast to familial PD, most sporadic PD cases do not have genetic mutation, but may suffer from partial dysfunction of neuron-protective genes as aging. Using conditional transgenic RNAi, we showed that temporal silencing of PINK1 expression in adult mice increased striatal dopamine, the phenotype that could not be induced by constitutive gene silencing. Moreover, early exposure to paraquat sensitized dopaminergic neurons to subsequent silencing of PINK1 gene expression, leading to a significant loss of dopaminergic neurons. Our findings suggest a novel pathogenesis of PD: exposure to environmental toxicants early in the life reduces the threshold of developing PD and partial dysfunction of neuron-protective genes later in the life initiates a process of progressive neurodegeneration to cross the reduced threshold of disease onset.  相似文献   

12.
13.
Patients with alcoholic liver disease (ALD) often display disturbed iron indices. Hepcidin, a key regulator of iron metabolism, has been shown to be down‐regulated by alcohol in cell lines and animal models. This down‐regulation led to increased duodenal iron transport and absorption in animals. In this study, we investigated gene expression of duodenal iron transport molecules and hepcidin in three groups of patients with ALD (with anaemia, with iron overload and without iron overload) and controls. Expression of DMT1, FPN1, DCYTB, HEPH, HFE and TFR1 was measured in duodenal biopsies by using real‐time PCR and Western blot. Serum hepcidin levels were measured by using ELISA. Serum hepcidin was decreased in patients with ALD. At the mRNA level, expressions of DMT1, FPN1 and TFR1 genes were significantly increased in ALD. This pattern was even more pronounced in the subgroups of patients without iron overload and with anaemia. Protein expression of FPN1 paralleled the increase at the mRNA level in the group of patients with ALD. Serum ferritin was negatively correlated with DMT1 mRNA. The down‐regulation of hepcidin expression leading to up‐regulation of iron transporters expression in the duodenum seems to explain iron metabolism disturbances in ALD. Alcohol consumption very probably causes suppression of hepcidin expression in patients with ALD.  相似文献   

14.
15.
16.
Numerous single nucleotide polymorphisms (SNPs), which have been identified as susceptibility factors for Parkinson's disease (PD) as per genome‐wide association studies, have not been fully characterized for PD patients in China. This study aimed to replicate the relationship between 12 novel SNPs of 12 genes and PD risk in southern Chinese population. Twelve SNPs of 12 genes were detected in 231 PD patients and 249 controls, using the SNaPshot technique. Meta‐analysis was used to assess heterogeneity of effect sizes between this study and published data. The impact of SNPs on gene expression was investigated by analysing the SNP‐gene association in the expression quantitative trait loci (eQTL) data sets. rs8180209 of SNCA (allele model: P = .047, OR = 0.77; additive model: P = .047, OR = 0.77), rs2270968 of MCCC1 (dominant model: P = .024, OR = 1.52), rs7479949 of DLG2 (recessive model; P = .019, OR = 1.52), rs10748818 of GBF1 (additive model: P < .001, OR = 0.37), and rs4771268 of MBNL2 (recessive model: P = .003, OR = 0.48) were replicated to be significantly associated with the increased risk of PD. Noteworthy, a meta‐analysis of previous studies suggested rs8180209, rs2270968, rs7479949 and rs4771268 were in line with those of our cohort. Our study replicated five novel functional SNPs in SNCA, MCCC1, DLG2, GBF1 and MBNL2 could be associated with increased risk of PD in southern Chinese population.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号