首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Depression has been associated with a low‐grade chronic inflammatory state, suggesting a potential therapeutic role for anti‐inflammatory agents. Fisetin is a naturally occurring flavonoid in strawberries that has anti‐inflammatory activities, but whether fisetin has antidepressant effects is unknown. In this study, we exposed mice to spatial restraint for 2 weeks with or without treatment with fisetin. Immobility time in the forced swimming and tail suspension test after this restraint increased in the untreated group, but this increase did not occur in the fisetin group. We administered fisetin to Abelson helper integration site‐1 (Ahi1) knockout mice, which have depressive phenotypes. We found that fisetin attenuated the depressive phenotype of these Ahi1 knockout mice. We further investigated the potential mechanism of fisetin's antidepressant effects. Because TrkB is a critical signaling pathway in the mechanisms of depression, we examined whether phosphorylated TrkB was involved in the antidepressant effects of fisetin. We found that fisetin increased phosphorylated TrkB level without altering total TrkB; this increase was attenuated by K252a, a specific TrkB inhibitor. Taken together, our results demonstrated that fisetin may have therapeutic potential for treating depression and that this antidepressant effect may be mediated by the activation of the TrkB signaling pathway.

  相似文献   

2.
The attribution of incentive salience to reward‐predictive stimuli has been shown to be associated with substance abuse‐like behavior such as increased drug taking. Evidence suggests that glutamate neurotransmission and sequential N‐methyl‐D‐aspartate (NMDA) activation are involved in the attribution of incentive salience. Here, we further explore the role of second‐by‐second glutamate neurotransmission in the attribution of incentive salience to reward‐predictive stimuli by measuring sign‐tracking behavior during a Pavlovian conditioned approach procedure using ceramic‐based microelectrode arrays configured for sensitive measures of extracellular glutamate in awake behaving Sprague‐Dawley rats. Specifically, we show that there is an increase in extracellular glutamate levels in the prelimbic cortex (PrL) and the nucleus accumbens core (NAcC) during sign‐tracking behavior to a food‐predictive conditioned stimulus (CS+) compared to the presentation of a non‐predictive conditioned stimulus (CS?). Furthermore, the results indicate greater increases in extracellular glutamate levels in the PrL compared to NAcC in response to the CS+, including differences in glutamate release and signal decay. Taken together, the present research suggests that there is differential glutamate signaling in the NAcC and PrL during sign‐tracking behavior to a food‐predictive CS+.

  相似文献   

3.
This editorial highlights a study by Rodriguez, Sanchez‐Moran et al. (2019) in the current issue of the Journal of Neurochemistry, in which the authors describe a microcephalic boy carrying the novel heterozygous de novo missense mutation c.560A> G; p.Asp187Gly in Cdh1/Fzr1 encoding the APC/C E3‐ubiquitin ligase cofactor CDH1. A functional characterization of mutant APC/CCDH1 confirms an aberrant division of neural progenitor cells, a condition known to determine the mouse brain cortex size. These data suggest that APC/CCDH1 may contribute to the regulation of the human brain size.

  相似文献   


4.
The blood–brain barrier (BBB ) maintains brain homeostasis by tightly regulating the exchange of molecules with systemic circulation. It consists primarily of microvascular endothelial cells surrounded by astrocytic endfeet, pericytes, and microglia. Understanding the make‐up of transporters in rat BBB is essential to the translation of pharmacological and toxicological observations into humans. In this study, experimental workflows are presented in which the optimization of (a) isolation of rat brain microvessels (b) enrichment of endothelial cells, and (c) extraction and digestion of proteins were evaluated, followed by identification and quantification of BBB proteins. Optimization of microvessel isolation was indicated by 15‐fold enrichment of endothelial cell marker Glut1 mRNA , whereas markers for other cell types were not enriched. Filter‐aided sample preparation was shown to be superior to in‐solution sample preparation (10251 peptides vs. 7533 peptides). Label‐free proteomics was used to identify nearly 2000 proteins and quantify 1276 proteins in isolated microvessels. A combination of targeted and global proteomics was adopted to measure protein abundance of 6 ATP‐binding cassette and 27 solute carrier transporters. Data analysis using proprietary Progenesis and open access MaxQuant software showed overall agreement; however, Abcb9 and Slc22a8 were quantified only by MaxQuant, whereas Abcc9 and Abcd3 were quantified only by Progenesis. Agreement between targeted and untargeted quantification was demonstrated for Abcb1 (19.7 ± 1.4 vs. 17.8 ± 2.3) and Abcc4 (2.2 ± 0.7 vs. 2.1 ± 0.4), respectively. Rigorous quantification of BBB proteins, as reported in this study, should assist with translational modeling efforts involving brain disposition of xenobiotics.

  相似文献   

5.
Synaptic dysfunction and neuronal death are responsible for cognitive and behavioral deficits in Alzheimer's disease (AD). It is well known that such neurological abnormalities are preceded by long‐term exposure of amyloid β‐peptide (Aβ) and/or hyperphosphorylated tau prior. In addition to the neurological deficit, astrocytes as a major glial cell type in the brain, significantly participate in the neuropathogenic mechanisms underlying synaptic modulation. Although astrocytes play a significant key role in modulating synaptic transmission, little is known on whether astrocyte dysfunction caused by such long‐term Aβ exposure affects synapse formation and function. Here, we show that synapse formation and synaptic transmission are attenuated in hippocampal‐naïve neurons co‐cultured with astrocytes that have previously experienced chronic Aβ1‐40 exposure. In this abnormal astrocytic condition, hippocampal neurons exhibit decrements of evoked excitatory post‐synaptic currents (EPSCs) and miniature EPSC frequency. Furthermore, size of readily releasable synaptic pools and number of excitatory synapses were also significantly decreased. Contrary to these negative effects, release probability at individual synapses was significantly increased in the same astrocytic condition. Taken together, our data indicate that lower synaptic transmission caused by astrocytes previously, and chronically, exposed to Aβ1–40 is attributable to a small number of synapses with higher release probability.

  相似文献   

6.
TAR DNA ‐binding protein 43 (TDP ‐43) is an RNA ‐binding protein and a major component of protein aggregates found in amyotrophic lateral sclerosis and several other neurodegenerative diseases. TDP ‐43 exists as a full‐length protein and as two shorter forms of 25 and 35 kD a. Full‐length mutant TDP ‐43s found in amyotrophic lateral sclerosis patients re‐localize from the nucleus to the cytoplasm and in part to mitochondria, where they exert a toxic role associated with neurodegeneration. However, induction of mitochondrial damage by TDP ‐43 fragments is yet to be clarified. In this work, we show that the mitochondrial 35 kD a truncated form of TDP ‐43 is restricted to the intermembrane space, while the full‐length forms also localize in the mitochondrial matrix in cultured neuronal NSC ‐34 cells. Interestingly, the full‐length forms clearly affect mitochondrial metabolism and morphology, possibly via their ability to inhibit the expression of Complex I subunits encoded by the mitochondrial‐transcribed mRNA s, while the 35 kD a form does not. In the light of the known differential contribution of the full‐length and short isoforms to generate toxic aggregates, we propose that the presence of full‐length TDP ‐43s in the matrix is a primary cause of mitochondrial damage. This in turn may cause oxidative stress inducing toxic oligomers formation, in which short TDP ‐43 forms play a major role.

  相似文献   

7.
It has been well‐known that hypothalamic orexigenic neuropeptides, orexin‐A, and melanin‐concentrating hormone (MCH), play important roles in regulation of gastric function. However, what neural pathway mediated by the two neuropeptides affects the gastric function remains unknown. In this study, by way of nucleic stimulation and extracellular recording of single unit electrophysiological properties, we found that electrically stimulating the lateral hypothalamic area (LH) or microinjection of orexin‐A into the arcuate nucleus (ARC) excited most gastric distension‐responsive neurons in the nuclei and enhanced the gastric function including motility, emptying, and acid secretion of conscious rats. The results indicated that LH‐ARC orexin‐A‐ergic projections may exist and the orexin‐A in the ARC affected afferent and efferent signal transmission between ARC and stomach. As expected, combination of retrograde tracing and immunohistochemistry showed that some orexin‐A‐ergic neurons projected from the LH to the ARC. In addition, microinjection of MCH and its receptor antagonist PMC‐3881‐PI into the ARC affected the role of orexin‐A in the ARC, indicating a possible involvement of the MCH pathway in the orexin‐A role. Our findings suggest that there was an orexin‐A‐ergic pathway between LH and ARC which participated in transmitting information between the central nuclei and the gastrointestinal tract and in regulating the gastric function of rats.

  相似文献   

8.
Beta‐adrenoceptors (β2‐AR s) have beneficial effects on prefrontal cortex (PFC ) working memory, however, the cellular and molecular mechanisms are unclear yet. In this study, we probed the effect of β2‐AR ‐selective agonist clenbuterol (Clen) on synaptic transmission in layer 5/6 pyramidal neurons of PFC . Bath application of Clen reduced spontaneous IPSC (sIPSC ) frequency without effects on sEPSC s. Clen did not alter the frequency and amplitude of miniature IPSC s (mIPSC s), but exerted heterogeneous effects on evoked IPSC s (eIPSC s) recorded from PFC layer 5/6 pyramidal neurons. Clen decreased the firing rate of action potentials of fast‐spiking GABA ergic interneurons. Clen‐induced hyperpolarization of fast‐spiking GABA ergic interneurons required potentiation of an inward rectifier K+ channels. Clen‐induced hyperpolarization of fast‐spiking interneurons was dependent on Gs protein rather than cAMP and protein kinase A. Our findings demonstrate that Clen (10 μM) enhances inward rectifier K+ channels via Gs protein to cause membrane hyperpolarization of fast‐spiking GABA ergic interneurons resulting in reduction of action potentials firing rate to reduce GABA ergic transmission.

  相似文献   

9.
Lower levels of the cognitively beneficial docosahexaenoic acid (DHA) are often observed in Alzheimer's disease (AD) brains. Brain DHA levels are regulated by the blood‐brain barrier (BBB) transport of plasma‐derived DHA, a process facilitated by fatty acid‐binding protein 5 (FABP5). This study reports a 42.1 ± 12.6% decrease in the BBB transport of 14C‐DHA in 8‐month‐old AD transgenic mice (APPswe,PSEN1?E9) relative to wild‐type mice, associated with a 34.5 ± 6.7% reduction in FABP5 expression in isolated brain capillaries of AD mice. Furthermore, short‐term spatial and recognition memory deficits were observed in AD mice on a 6‐month n‐3 fatty acid‐depleted diet, but not in AD mice on control diet. This intervention led to a dramatic reduction (41.5 ± 11.9%) of brain DHA levels in AD mice. This study demonstrates FABP5 deficiency and impaired DHA transport at the BBB are associated with increased vulnerability to cognitive deficits in mice fed an n‐3 fatty acid‐depleted diet, in line with our previous studies demonstrating a crucial role of FABP5 in BBB transport of DHA and cognitive function.

  相似文献   

10.
11.
Inflammation within the CNS is a major component of many neurodegenerative diseases. A characteristic feature is the generation of microglia‐derived factors that play an essential role in the immune response. IL‐1β is a pro‐inflammatory cytokine released by activated microglia, able to exacerbate injury at elevated levels. In the presence of caspase‐1, pro‐IL‐1β is cleaved to the mature cytokine following NOD‐like receptor pyrin domain containing 3 (NLRP3) inflammasome activation. Growing evidence suggests that ceramide plays a critical role in NLRP3 inflammasome assembly, however, the relationship between ceramide and inflammasome activation in microglia remains unknown. Here, we investigated potential mechanistic links between ceramide as a modulator of NLRP3 inflammasome assembly and the resulting secretion of IL‐1β using small bioactive enzyme stimulators and inhibitors of ceramide signaling in wild‐type and apoptosis‐associated speck‐like protein containing a CARD knockout (ASC?/?) primary microglia. To induce the expression of inflammasome components, microglia were primed prior to experiments. Treatment with sodium palmitate (PA) induced de novo ceramide synthesis via modulation of its synthesizing protein serine palmitoyl transferase resulting in increased IL‐1β secretion in microglia. Exposure of microglia to the serine palmitoyl transferase‐inhibitor l ‐cycloserine significantly prevented PA‐induced IL‐1β secretion. Application of the ceramide analogue C2 and the sphingosine‐1‐phosphate‐receptor agonist Fingolimod (FTY720) up‐regulated levels of IL‐1β and cleaved caspase‐1 in wild‐type microglia, whereas ASC?/? microglia were unaffected. HPA‐12 inhibition of ceramide transport did not affect inflammasome activation. Taken together, our findings reveal a critical role for ceramide as a positive modulator of NLRP3 inflammasome assembly and the resulting release of IL‐1β.

  相似文献   

12.
The cytochrome P450 2D (CYP2D) mediates synthesis of serotonin from 5‐methoxytryptamine (5‐MT), shown in vitro for cDNA‐expressed CYP2D‐isoforms and liver and brain microsomes. We aimed to demonstrate this synthesis in the brain in vivo. We measured serotonin tissue content in brain regions after 5‐MT injection into the raphe nuclei (Model‐A), and its extracellular concentration in rat frontal cortex and striatum using an in vivo microdialysis (Model‐B) in male Wistar rats. Naïve rats served as control animals. 5‐MT injection into the raphe nuclei of PCPA‐(tryptophan hydroxylase inhibitor)‐pretreated rats increased the tissue concentration of serotonin (from 40 to 90% of the control value, respectively, in the striatum), while the CYP2D inhibitor quinine diminished serotonin level in some brain structures of those animals (Model‐A). 5‐MT given locally through a microdialysis probe markedly increased extracellular serotonin concentration in the frontal cortex and striatum (to 800 and 1000% of the basal level, respectively) and changed dopamine concentration (Model‐B). Quinine alone had no effect on serotonin concentration; however, given jointly with 5‐MT, it prevented the 5‐MT‐induced increase in cortical serotonin in naïve rats and in striatal serotonin in PCPA‐treated animals. These results indicate that the CYP2D‐catalyzed alternative pathway of serotonin synthesis from 5‐MT is relevant in the brain in vivo, and set a new target for the action of psychotropics.

  相似文献   


13.
14.
Dopamine (DA), a highly significant neurotransmitter in the mammalian central nervous system, operates on multiple time scales to affect a diverse array of physiological functions. The significance of DA in human health is heightened by its role in a variety of pathologies. Voltammetric measurements of electrically evoked DA release have brought to light the existence of a patchwork of DA kinetic domains in the dorsal striatum (DS) of the rat. Thus, it becomes necessary to consider how these domains might be related to specific aspects of DA's functions. Responses evoked in the fast and slow domains are distinct in both amplitude and temporal profile. Herein, we report that responses evoked in fast domains can be further classified into four distinct types, types 1–4. The DS, therefore, exhibits a total of at least five distinct evoked responses (four fast types and one slow type). All five response types conform to kinetic models based entirely on first‐order rate expressions, which indicates that the heterogeneity among the response types arises from kinetic diversity within the DS terminal field. We report also that functionally distinct subregions of the DS express DA kinetic diversity in a selective manner. Thus, this study documents five response types, provides a thorough kinetic explanation for each of them, and confirms their differential association with functionally distinct subregions of this key DA terminal field.

  相似文献   


15.
《Journal of neurochemistry》2019,149(5):559-561
We are very sad that the ISN lost its President Kazuhiro Ikenaka, Professor and Chairman at National Institute for Physiological Sciences (NIPS), Director of Okazaki Institute of Integrative Biology. JNeurochem published an Obituary to value his outstanding achievements: Akio Wanaka et al. (2019) OBITUARY Kazuhiro Ikenaka (1952‐2018). https://doi.org/10.1111/jnc.14679

  相似文献   


16.
17.
Previous studies have convincingly argued that reactive oxygen species (ROS ) contribute to the development of several major types of sensorineural hearing loss, such as noise‐induced hearing loss (NIHL ), drug‐induced hearing loss, and age‐related hearing loss. However, the underlying molecular mechanisms induced by ROS in these pathologies remain unclear. To resolve this issue, we established an in vivo model of ROS overproduction by generating a transgenic (TG ) mouse line expressing the human NADPH oxidase 4 (NOX 4, NOX 4‐ TG mice), which is a constitutively active ROS ‐producing enzyme that does not require stimulation or an activator. Overproduction of ROS was detected at the cochlea of the inner ear in NOX 4 ‐TG mice, but they showed normal hearing function under baseline conditions. However, they demonstrated hearing function vulnerability, especially at high‐frequency sounds, upon exposure to intense noise, which was accompanied by loss of cochlear outer hair cells (OHC s). The vulnerability to loss of hearing function and OHC s was rescued by treatment with the antioxidant Tempol. Additionally, we found increased protein levels of the heat‐shock protein 47 (HSP 47) in models using HEK 293 cells, including H2O2 treatment and cells with stable and transient expression of NOX 4. Furthermore, the up‐regulated levels of Hsp47 were observed in both the cochlea and heart of NOX 4 ‐TG mice. Thus, antioxidant therapy is a promising approach for the treatment of NIHL . Hsp47 may be an endogenous antioxidant factor, compensating for the chronic ROS overexposure in vivo , and counteracting ROS ‐related hearing loss.

  相似文献   

18.
19.
Previous studies have implicated the role of Purkinje cells in motor learning and the underlying mechanisms have also been identified in great detail during the last decades. Here we report that cyclin‐dependent kinase 5 (Cdk5)/p35 in Purkinje cell also contributes to synaptic plasticity. We previously showed that p35?/? (p35 KO) mice exhibited a subtle abnormality in brain structure and impaired spatial learning and memory. Further behavioral analysis showed that p35 KO mice had a motor coordination defect, suggesting that p35, one of the activators of Cdk5, together with Cdk5 may play an important role in cerebellar motor learning. Therefore, we created Purkinje cell‐specific conditional Cdk5/p35 knockout (L7‐p35 cKO) mice, analyzed the cerebellar histology and Purkinje cell morphology of these mice, evaluated their performance with balance beam and rota‐rod test, and performed electrophysiological recordings to assess long‐term synaptic plasticity. Our analyses showed that Purkinje cell‐specific deletion of Cdk5/p35 resulted in no changes in Purkinje cell morphology but severely impaired motor coordination. Furthermore, disrupted cerebellar long‐term synaptic plasticity was observed at the parallel fiber‐Purkinje cell synapse in L7‐p35 cKO mice. These results indicate that Cdk5/p35 is required for motor learning and involved in long‐term synaptic plasticity.

  相似文献   


20.
Depression is one of the most debilitating neuropsychiatric disorders. Most of the current antidepressants have long remission time and low recovery rate. This study explores the impact of ketamine on neuronal and astroglial metabolic activity in prefrontal cortex in a social defeat (SD) model of depression. C57BL/6 mice were subjected to a social defeat paradigm for 5 min a day for 10 consecutive days. Ketamine (10 mg/kg, intraperitoneal) was administered to mice for two consecutive days following the last defeat stress. Mice were infused with [1,6‐13C2]glucose or [2‐13C]acetate to assess neuronal and astroglial metabolic activity, respectively, together with proton‐observed carbon‐edited nuclear magnetic resonance spectroscopy in prefrontal cortex tissue extract. The 13C labeling of amino acids from glucose and acetate was decreased in SD mice. Ketamine treatment in SD mice restored sucrose preference, social interaction and immobility time to control values. Acute subanesthetic ketamine restored the 13C labeling of brain amino acids from glucose as well as acetate in SD mice to the respective control values, suggesting that rates of neuronal and astroglial tricarboxylic acid (TCA) cycle and neurotransmitter cycling were re‐established to normal levels. The finding of improved energy metabolism in SD mice suggests that fast anti‐depressant action of ketamine is linked with improved neurotransmitter cycling.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号