首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cocaine is a recreational drug of abuse that binds to the dopamine transporter, preventing reuptake of dopamine into pre‐synaptic terminals. The increased presence of synaptic dopamine results in stimulation of both pre‐ and post‐synaptic dopamine receptors, considered an important mechanism by which cocaine elicits its reinforcing properties. However, the effects of acute cocaine administration on pre‐synaptic dopamine function remain unclear. Non‐invasive imaging techniques such as positron emission tomography have revealed impaired pre‐synaptic dopamine function in chronic cocaine users. Similar impairments have been seen in animal studies, with microdialysis experiments indicating decreased basal dopamine release. Here we use micro positron emission tomography imaging techniques in mice to measure dopamine synthesis capacity and determine the effect of acute cocaine administration of pre‐synaptic dopamine function. We show that a dose of 20 mg/kg cocaine is sufficient to elicit hyperlocomotor activity, peaking 15–20 min post treatment (p < 0.001). However, dopamine synthesis capacity in the striatum was not significantly altered by acute cocaine treatment (: 0.0097 per min vs. 0.0112 per min in vehicle controls, p > 0.05). Furthermore, expression levels of two key enzymes related to dopamine synthesis, tyrosine hydroxylase and aromatic l ‐amino acid decarboxylase, within the striatum of scanned mice were not significantly affected by acute cocaine pre‐treatment (p > 0.05). Our findings suggest that while the regulation of dopamine synthesis and release in the striatum have been shown to change with chronic cocaine use, leading to a reduced basal tone, these adaptations to pre‐synaptic dopaminergic neurons are not initiated following a single exposure to the drug.

  相似文献   

2.
Copper (Cu), an essential trace element present throughout the mammalian nervous system, is crucial for normal synaptic function. Neuronal handling of Cu is poorly understood. We studied the localization and expression of Atp7a, the major intracellular Cu transporter in the brain, and its relation to peptidylglycine α‐amidating monooxygenase (PAM), an essential cuproenzyme and regulator of Cu homeostasis in neuroendocrine cells. Based on biochemical fractionation and immunostaining of dissociated neurons, Atp7a was enriched in post‐synaptic vesicular fractions. Cu followed a similar pattern, with ~ 20% of total Cu in synaptosomes. A mouse model heterozygous for the Pam gene (PAM+/?) was selectively Cu deficient in the amygdala. As in cortex and hippocampus, Atp7a and PAM expression overlap in the amygdala, with highest expression in interneurons. Messenger RNA levels of Atox‐1 and Atp7a, which deliver Cu to the secretory pathway, were reduced in the amygdala but not in the hippocampus in PAM+/? mice, GABAB receptor mRNA levels were similarly affected. Consistent with Cu deficiency, dopamine β‐monooxygenase function was impaired as evidenced by elevated dopamine metabolites in the amygdala, but not in the hippocampus, of PAM+/? mice. These alterations in Cu delivery to the secretory pathway in the PAM+/? amygdala may contribute to the physiological and behavioral deficits observed.

  相似文献   


3.
Purines are metabolic building blocks essential for all living organisms on earth. De novo purine biosynthesis occurs in the brain and appears to play important roles in neural development. Phosphoribosyl formylglycinamidine synthase (FGAMS , also known as PFAS or FGARAT ), a core enzyme involved in the de novo synthesis of purines, may play alternative roles in viral pathogenesis. To date, no thorough investigation of the endogenous expression and localization of de novo purine biosynthetic enzymes has been conducted in human neurons or in virally infected cells. In this study, we characterized expression of FGAMS using multiple neuronal models. In differentiated human SH ‐SY 5Y neuroblastoma cells, primary rat hippocampal neurons, and in whole‐mouse brain sections, FGAMS immunoreactivity was distributed within the neuronal cytoplasm. FGAMS immunolabeling in vitro demonstrated extensive distribution throughout neuronal processes. To investigate potential changes in FGAMS expression and localization following viral infection, we infected cells with the human pathogen herpes simplex virus 1. In infected fibroblasts, FGAMS immunolabeling shifted from a diffuse cytoplasmic location to a mainly perinuclear localization by 12 h post‐infection. In contrast, in infected neurons, FGAMS localization showed no discernable changes in the localization of FGAMS immunoreactivity. There were no changes in total FGAMS protein levels in either cell type. Together, these data provide insight into potential purine biosynthetic mechanisms utilized within neurons during homeostasis as well as viral infection.

Cover Image for this Issue: doi: 10.1111/jnc.14169 .
  相似文献   

4.
Interleukin‐1β (IL‐1β) is essential for eliciting protective immunity during the acute phase of Staphylococcus aureus (S. aureus) infection in the central nervous system (CNS). We previously demonstrated that microglial IL‐1β production in response to live S. aureus is mediated through the Nod‐like receptor protein 3 (NLRP3) inflammasome, including the adapter protein ASC (apoptosis‐associated speck‐like protein containing a caspase‐1 recruitment domain), and pro‐caspase 1. Here, we utilized NLRP3, ASC, and caspase 1/11 knockout (KO) mice to demonstrate the functional significance of inflammasome activity during CNS S. aureus infection. ASC and caspase 1/11 KO animals were exquisitely sensitive, with approximately 50% of mice succumbing to infection within 24 h. Unexpectedly, the survival of NLRP3 KO mice was similar to wild‐type animals, suggesting the involvement of an alternative upstream sensor, which was later identified as absent in melanoma 2 (AIM2) based on the similar disease patterns between AIM2 and ASC KO mice. Besides IL‐1β, other key inflammatory mediators, including IL‐6, CXCL1, CXCL10, and CCL2 were significantly reduced in the CNS of AIM2 and ASC KO mice, implicating autocrine/paracrine actions of IL‐1β, as these mediators do not require inflammasome processing for secretion. These studies demonstrate a novel role for the AIM2 inflammasome as a critical molecular platform for regulating IL‐1β release and survival during acute CNS S. aureus infection.

  相似文献   


5.
Peripheral myelin protein 22 (PMP 22) is a component of compact myelin in the peripheral nervous system. The amount of PMP 22 in myelin is tightly regulated, and PMP 22 over or under‐expression cause Charcot‐Marie‐Tooth 1A (CMT 1A) and Hereditary Neuropathy with Pressure Palsies (HNPP ). Despite the importance of PMP 22 , its function remains largely unknown. It was reported that PMP 22 interacts with the β4 subunit of the laminin receptor α6β4 integrin, suggesting that α6β4 integrin and laminins may contribute to the pathogenesis of CMT 1A or HNPP . Here we asked if the lack of α6β4 integrin in Schwann cells influences myelin stability in the HNPP mouse model. Our data indicate that PMP 22 and β4 integrin may not interact directly in myelinating Schwann cells, however, ablating β4 integrin delays the formation of tomacula, a characteristic feature of HNPP . In contrast, ablation of integrin β4 worsens nerve conduction velocities and non‐compact myelin organization in HNPP animals. This study demonstrates that indirect interactions between an extracellular matrix receptor and a myelin protein influence the stability and function of myelinated fibers.

  相似文献   

6.
The mammalian target of rapamycin (mTOR) signalling cascade is involved in the intracellular regulation of protein synthesis, specifically for proteins involved in controlling neuronal morphology and facilitating synaptic plasticity. Research has revealed that the activity of the mTOR cascade is influenced by several extracellular and environmental factors that have been implicated in schizophrenia. Therefore, there is reason to believe that one of the downstream consequences of dysfunction or hypofunction of these factors in schizophrenia is disrupted mTOR signalling and hence impaired protein synthesis. This results in abnormal neurodevelopment and deficient synaptic plasticity, outcomes which could underlie some of the positive, negative and cognitive symptoms of schizophrenia. This review will discuss the functional roles of the mTOR cascade and present evidence in support of a novel mTOR‐based hypothesis of the neuropathology of schizophrenia.

  相似文献   


7.
8.
In vitro and in vivo studies have suggested that reduced astrocytic uptake of neuronally released glutamate, alterations in expression of glial fibrillary acidic protein (GFAP) and aquaporin‐4 (AQP‐4) contribute to brain edema in acute liver failure (ALF). However, there is no evidence to date to suggest that these alterations occur in patients with ALF. We analyzed the mRNA expression of excitatory amino acid transporters (EAAT‐1, EAAT‐2), GFAP, and AQP‐4 in the cerebral cortex obtained at autopsy from eight patients with ALF and from seven patients with no evidence of hepatic or neurological disorders by real‐time PCR, and protein expression was assessed using immunoblotting and immunohistochemistry. We demonstrated a significant decrease in GFAP mRNA and protein levels in ALF patients compared to controls. While the loss of EAAT‐2 protein in ALF samples was post‐translational in nature, EAAT‐1 protein remained within normal limits. Immunohistochemistry confirmed that, in all cases, the losses of EAAT‐2 and GFAP were uniquely astrocytic in their localization. AQP‐4 mRNA expression was significantly increased and its immunohistochemistry demonstrated increased AQP‐4 immunoreactivity in the glial end‐feet process surrounding the microvessels. These findings provide evidence of selective alterations in the expression of genes coding for key astrocytic proteins implicated in central nervous system (CNS) excitability and brain edema in human ALF.

  相似文献   


9.
Lower levels of the cognitively beneficial docosahexaenoic acid (DHA) are often observed in Alzheimer's disease (AD) brains. Brain DHA levels are regulated by the blood‐brain barrier (BBB) transport of plasma‐derived DHA, a process facilitated by fatty acid‐binding protein 5 (FABP5). This study reports a 42.1 ± 12.6% decrease in the BBB transport of 14C‐DHA in 8‐month‐old AD transgenic mice (APPswe,PSEN1?E9) relative to wild‐type mice, associated with a 34.5 ± 6.7% reduction in FABP5 expression in isolated brain capillaries of AD mice. Furthermore, short‐term spatial and recognition memory deficits were observed in AD mice on a 6‐month n‐3 fatty acid‐depleted diet, but not in AD mice on control diet. This intervention led to a dramatic reduction (41.5 ± 11.9%) of brain DHA levels in AD mice. This study demonstrates FABP5 deficiency and impaired DHA transport at the BBB are associated with increased vulnerability to cognitive deficits in mice fed an n‐3 fatty acid‐depleted diet, in line with our previous studies demonstrating a crucial role of FABP5 in BBB transport of DHA and cognitive function.

  相似文献   

10.
The formation of neurotoxic prion protein (PrP) oligomers is thought to be a key step in the development of prion diseases. Recently, it was determined that the sonication and shaking of recombinant PrP can convert PrP monomers into β‐state oligomers. Herein, we demonstrate that β‐state oligomeric PrP can be generated through protein misfolding cyclic amplification from recombinant full‐length hamster, human, rabbit, and mutated rabbit PrP, and that these oligomers can be used for subsequent research into the mechanisms of PrP‐induced neurotoxicity. We have characterized protein misfolding cyclic amplification‐induced monomer‐to‐oligomer conversion of PrP from three species using western blotting, circular dichroism, size‐exclusion chromatography, and resistance to proteinase K (PK) digestion. We have further shown that all of the resulting β‐oligomers are toxic to primary mouse cortical neurons independent of the presence of PrPC in the neurons, whereas the corresponding monomeric PrP were not toxic. In addition, we found that this toxicity is the result of oligomer‐induced apoptosis via regulation of Bcl‐2, Bax, and caspase‐3 in both wild‐type and PrP?/? cortical neurons. It is our hope that these results may contribute to our understanding of prion transformation within the brain.

  相似文献   


11.
Stroke is a multi‐factorial polygenic disease and is a major cause of death and adult disability. Administration of bone marrow stem cells protects ischemic rat brain by facilitating recovery of neurological functions. But the molecular mechanism of stem cells action and their effect on gene expression is not well explored. In this study, we have transplanted 1 × 106 human bone marrow mesenchymal stem cells (hBMMSCs) in middle cerebral artery occluded (MCAo) adult male Wistar rats through intracarotid artery route at 24 h after surgery. Motor behavioral tests (rotarod and open field) were performed to assess the changes in motor functions at day 0 and day1, 4, 8 and 14. The expression of studied genes at mRNA and protein level was quantified by using Q‐PCR and western blotting, respectively. Further, we have assessed the methylation pattern of promoter of these genes by using methylation‐specific PCR. Data were analyzed statistically and correlated. A significant improvement in behavioral deficits was observed in stem cells treated group after 14th day post stroke. Significantly (p < 0.05) increased mRNA and protein levels of brain derived neurotrophic factor and ANP genes in hBMMSCs treated group along with decrease in methylation level at their promoter was observed. On the other hand, significantly decreased mRNA and protein level of TSP1 and WNK1 in hBMMSCs treated group was observed. In conclusion, hBMMSCs administration significantly improves the behavioral deficits by improving motor and locomotor coordination. The promoter of TSP1 and WNK1 genes was found to be hyper‐methylated in hBMMSCs group resulting in their decreased expression while the promoter of ANP and brain derived neurotrophic factor was found to be hypo‐methylated. This study might shed a light on how hBMMSCs affect the gene expression by modulating methylation status.

  相似文献   

12.
Pleiotrophin (PTN) is a cytokine with important roles in dopaminergic neurons. We found that an acute ethanol (2.0 g/kg, i.p.) administration causes a significant up‐regulation of PTN mRNA and protein levels in the mouse prefrontal cortex, suggesting that endogenous PTN could modulate behavioural responses to ethanol. To test this hypothesis, we studied the behavioural effects of ethanol in PTN knockout (PTN?/?) mice and in mice with cortex‐ and hippocampus‐specific transgenic PTN over‐expression (PTN‐Tg). Ethanol (1.0 and 2.0 g/kg) induced an enhanced conditioned place preference in PTN?/? compared to wild type mice, suggesting that PTN prevents ethanol rewarding effects. Accordingly, the conditioning effects of ethanol were completely abolished in PTN‐Tg mice. The ataxic effects induced by ethanol (2.0 g/kg) were not affected by the genotype. However, the sedative effects of ethanol (3.6 g/kg) tested in a loss of righting reflex paradigm were significantly reduced in PTN‐Tg mice, suggesting that up‐regulation of PTN levels prevents the sedative effects of ethanol. These results indicate that PTN may be a novel genetic factor of importance in alcohol use disorders, and that potentiation of the PTN signalling pathway may be a promising therapeutic strategy in the treatment of these disorders.

  相似文献   


13.
Because the cholinergic system is down‐regulated in the brain of Alzheimer's disease patients, cognitive deficits in Alzheimer's disease patients are significantly improved by rivastigmine treatment. To address the mechanism underlying rivastigmine‐induced memory improvements, we chronically treated olfactory bulbectomized (OBX) mice with rivastigmine. The chronic rivastigmine treatments for 12–13 days starting at 10 days after OBX operation significantly improved memory‐related behaviors assessed by Y‐maze task, novel object recognition task, passive avoidance task, and Barnes maze task, whereas the single rivastigmine treatment failed to improve the memory. Consistent with the improved memory‐related behaviors, long‐term potentiation in the hippocampal CA1 region was markedly restored by rivastigmine treatments. In immunoblotting analyses, the reductions of calcium/calmodulin‐dependent protein kinase II (CaMKII) autophosphorylation and calcium/calmodulin‐dependent protein kinase IV (CaMKIV) phosphorylation in the CA1 region in OBX mice were significantly restored by rivastigmine treatments. In addition, phosphorylation of AMPAR subunit glutamate receptor 1 (GluA1) (Ser‐831) and cAMP‐responsive element‐binding protein (Ser‐133) as downstream targets of CaMKII and CaMKIV, respectively, in the CA1 region was also significantly restored by chronic rivastigmine treatments. Finally, we confirmed that rivastigmine‐induced improvements of memory‐related behaviors and long‐term potentiation were not obtained in CaMKIIα+/? mice. On the other hand, CaMKIV?/? mice did not exhibit the cognitive impairments. Taken together, the stimulation of CaMKII activity in the hippocampus is essential for rivastigmine‐induced memory improvement in OBX mice.

  相似文献   


14.
15.
Aging and the presence of cerebrovascular disease are associated with increased incidence of Alzheimer's disease. A common feature of aging and cerebrovascular disease is decreased endothelial nitric oxide (NO). We studied the effect of a loss of endothelium derived NO on amyloid precursor protein (APP) related phenotype in late middle aged (LMA) (14–15 month) endothelial nitric oxide synthase deficient (eNOS?/?) mice. APP, β‐site APP cleaving enzyme (BACE) 1, and amyloid beta (Aβ) levels were significantly higher in the brains of LMA eNOS?/? mice as compared with LMA wild‐type controls. APP and Aβ1‐40 were increased in hippocampal tissue of eNOS?/? mice as compared with wild‐type mice. LMA eNOS?/? mice displayed an increased inflammatory phenotype as compared with LMA wild‐type mice. Importantly, LMA eNOS?/? mice performed worse in a radial arm maze test of spatial learning and memory as compared with LMA wild‐type mice. These data suggest that chronic loss of endothelial NO may be an important contributor to both Aβ related pathology and cognitive decline.

  相似文献   


16.
Cellular prion protein (PrPC ) is widely expressed and displays a variety of well‐described functions in the central nervous system (CNS ). Mutations of the PRNP gene are known to promote genetic human spongiform encephalopathies, but the components of gain‐ or loss‐of‐function mutations to PrPC remain a matter for debate. Among the proteins described to interact with PrPC is Stress‐inducible protein 1 (STI 1), a co‐chaperonin that is secreted from astrocytes and triggers neuroprotection and neuritogenesis through its interaction with PrPC . In this work, we evaluated the impact of different PrPC pathogenic point mutations on signaling pathways induced by the STI 1‐PrPC interaction. We found that some of the pathogenic mutations evaluated herein induce partial or total disruption of neuritogenesis and neuroprotection mediated by mitogen‐activated protein kinase (MAPK )/extracellular signal‐regulated kinases 1 and 2 (ERK 1/2) and protein kinase A (PKA ) signaling triggered by STI 1‐PrPC engagement. A pathogenic mutant PrPC that lacked both neuroprotection and neuritogenesis activities fail to promote negative dominance upon wild‐type PrPC . Also, a STI 1‐α7‐nicotinic acetylcholine receptor‐dependent cellular signaling was present in a PrPC mutant that maintained both neuroprotection and neuritogenesis activities similar to what has been previously observed by wild‐type PrPC . These results point to a loss‐of‐function mechanism underlying the pathogenicity of PrPC mutations.

  相似文献   

17.
Protein aggregation is a common feature of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. How protein aggregates are formed and contribute to neurodegeneration, however, is not clear. Mutation of Ubiquilin 2 (UBQLN2) has recently been linked to ALS and frontotemporal lobar degeneration. Therefore, we examined the effect of ALS‐linked UBQLN2 mutation on endoplasmic reticulum‐associated protein degradation (ERAD). Compared to its wild‐type counterpart, mutated UBQLN2 caused greater accumulation of the ERAD substrate Hong Kong variant of α‐1‐antitrypsin, although ERAD was disturbed by both UBQLN2 over‐expression and knockdown. Also, UBQLN2 interacted with ubiquitin regulatory X domain‐containing protein 8 (UBXD8) in vitro and in vivo, and this interaction was impaired by pathogenic mutation of UBQLN2. As UBXD8 is an endoplasmic membrane protein involved in the translocation of ubiquitinated ERAD substrates, UBQLN2 likely cooperates with UBXD8 to transport defective proteins from the endoplasmic reticulum to the cytosol for degradation, and this cell‐protective function is disturbed by pathogenic mutation of UBQLN2.

  相似文献   


18.
Intracellular protein trafficking is tightly regulated, and improper trafficking might be the fundamental provocateur for human diseases including neurodegeneration. In neurons, protein trafficking to and from the plasma membrane affects synaptic plasticity. Voltage‐gated potassium channel 2.1 (Kv2.1) is a predominant delayed rectifier potassium (K+) current, and electrical activity patterns of dopamine (DA) neurons within the substantia nigra are generated and modulated by the orchestrated function of different ion channels. The pathological hallmark of Parkinson's disease (PD) is the progressive loss of these DA neurons, resulting in the degeneration of striatal dopaminergic terminals. However, whether trafficking of Kv2.1 channels contributes to PD remains unclear. In this study, we demonstrated that MPTP/MPP+ increases the surface expression of the Kv2.1 channel and causes nigrostriatal degeneration by using a subchronic MPTP mouse model. The inhibition of the Kv2.1 channel by using a specific blocker, guangxitoxin‐1E, protected nigrostriatal projections against MPTP/MPP+ insult and thus facilitated the recovery of motor coordination. These findings highlight the importance of trafficking of Kv2.1 channels in the pathogenesis of PD.

  相似文献   

19.
Precise quantification of extracellular glutamate concentrations upon neuronal activation is crucial for the understanding of brain function and neurological disorders. While optogenetics is an outstanding method for the correlation between distinct neurons and their role in circuitry and behavior, the electrochemically inactive nature of glutamate has proven challenging for recording upon optogenetic stimulations. This difficulty is due to the necessity for using enzyme‐coated microelectrodes and the risk for light‐induced artifacts. In this study, we establish a method for the combination of in vivo optogenetic stimulation with selective measurement of glutamate concentrations using enzyme‐coated multielectrode arrays and amperometry. The glutamatergic subthalamic nucleus (STN ), which is the main electrode target site in deep brain stimulation treatment of advanced Parkinson′s disease, has recently proven opotogenetically targetable in Pitx2‐Cre‐transgenic mice and was here used as model system. Upon stereotactic injection of viral Channelrhodopsin2‐eYFP constructs into the STN , amperometric recordings were performed at a range of optogenetic stimulation frequencies in the globus pallidus, the main STN target area, in anesthetized mice. Accurate quantification was enabled through a multi‐step analysis approach based on self‐referencing microelectrodes and repetition of the experimental protocol at two holding potentials, which allowed for the identification, isolation and removal of photoelectric and photoelectrochemical artifacts. This study advances the field of in vivo glutamate detection with combined optogenetics and amperometric recordings by providing a validated analysis framework for application in a wide variety of glutamate‐based approaches in neuroscience.

  相似文献   

20.
Insulin receptor (IR) in the brain plays a role in synaptic plasticity and cognitive functions. Phosphorylation of α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionic acid (AMPA) receptors GluR1 subunit at Serine 831 is regulated by calcium–calmodulin‐dependent protein kinase II and protein kinase C that underlie long‐term potentiation and learning/memory. Recent studies have shown that the novel Protein Kinase M zeta (PKMζ) underlies synaptic plasticity and may regulate AMPAr. In this study, we show that insulin induces phosphorylation of Serine 831 GluR1 subunit of AMPAr and induces over‐expression of PKMζ; pre‐treatment with either the IR inhibitor 3‐Bromo‐5‐t‐butyl‐4‐hydroxy‐benzylidenemalonitrile (AG1024) or PKMζ inhibitor protein kinase C zeta pseudo‐substrate inhibitor returned the phosphorylation value of GluR1 to control level. Amyloid beta (Aβ) peptide in the form of oligomers interferes with IR signaling. Pre‐treating neuronal cultures with Aβ following incubation with insulin, we found a reduction of insulin‐dependent PKMζ over‐expression and MAPK/Erk (1/2) phosphorylation, i.e., signaling pathways involved in synaptic plasticity and learning/memory. These results indicate a new intracellular insulin signaling pathway, and, additionally, that insulin resistance in Alzheimer's disease is a response to the production and accumulation of Aβ.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号