首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characteristically, land plants exhibit a life cycle with an ‘alternation of generations’ and thus alternate between a haploid gametophyte and a diploid sporophyte. At meiosis and fertilisation the transitions between these two ontogenies take place in distinct single stem cells. The evolutionary invention of an embryo, and thus an upright multicellular sporophyte, in the ancestor of land plants formed the basis for the evolution of increasingly complex plant morphologies shaping Earth's ecosystems. Recent research employing the moss Physcomitrella patens revealed the homeotic gene BELL1 as a master regulator of the gametophyte‐to‐sporophyte transition. Here, we discuss these findings in the context of classical botanical observations.  相似文献   

2.
The neuronal endocannabinoid system is known to depress synaptic inputs retrogradely in an activity‐dependent manner. This mechanism has been generally described for excitatory glutamatergic and inhibitory GABAergic synapses. Here, we report that neurones in the auditory brainstem of the Mongolian gerbil (Meriones unguiculatus) retrogradely regulate the strength of their inputs via the endocannabinoid system. By means of whole‐cell patch‐clamp recordings, we found that retrograde endocannabinoid signalling attenuates both glycinergic and glutamatergic post‐synaptic currents in the same types of neurones. Accordingly, we detected the cannabinoid receptor 1 in excitatory and inhibitory pre‐synapses as well as the endocannabinoid‐synthesising enzymes (diacylglycerol lipase α/β, DAGLα/β) post‐synaptically through immunohistochemical stainings. Our study was performed with animals aged 10–15 days, that is, in the time window around the onset of hearing. Therefore, we suggest that retrograde endocannabinoid signalling has a role in adapting inputs during the functionally important switch from spontaneously generated to sound‐related signals.

  相似文献   


3.
Sphingolipid signaling is thought to regulate apoptosis via mechanisms that are dependent on the concentration of ceramide relative to that of sphingosine-1-phosphate (S1P). This study reports defects in reproductive structures and function that are associated with enhanced apoptosis in Drosophila Sply05091 mutants that lack functional S1P lyase and thereby accumulate sphingolipid long chain base metabolites. Analyses of reproductive structures in these adult mutants unmasked multiple abnormalities, including supernumerary spermathecae, degenerative ovaries, and severely reduced testes. TUNEL assessment revealed increased cell death in mutant egg chambers at most oogenic stages and in affected mutant testes. These reproductive abnormalities and elevated gonadal apoptosis were also observed, to varying degrees, in other mutants affecting sphingolipid metabolism. Importantly, the reproductive defects seen in the Sply05091 mutants were ameliorated both by a second site mutation in the lace gene that restores long chain base levels towards normal and by genetic disruption of the proapoptotic genes reaper, hid and grim. These data thus provide the first evidence in Drosophila that accumulated sphingolipids trigger elevated levels of apoptosis via the modulation of known signaling pathways.  相似文献   

4.
Mammalian target of rapamycin (mTOR) is a key protein kinase that regulates cell growth, metabolism, and autophagy to maintain cellular homeostasis. Its activity is inhibited by adverse conditions, including nutrient limitation, hypoxia, and DNA damage. In this study, we demonstrate that Che‐1, a RNA polymerase II‐binding protein activated by the DNA damage response, inhibits mTOR activity in response to stress conditions. We found that, under stress, Che‐1 induces the expression of two important mTOR inhibitors, Redd1 and Deptor, and that this activity is required for sustaining stress‐induced autophagy. Strikingly, Che‐1 expression correlates with the progression of multiple myeloma and is required for cell growth and survival, a malignancy characterized by high autophagy response.  相似文献   

5.
Peroxiredoxin‐5 (PRDX5) is an antioxidant enzyme which differs from the other peroxiredoxins with regards to its enzymatic mechanism, its high affinity for organic peroxides and peroxynitrite and its wide subcellular distribution. In particular, the mitochondrial isoform of PRDX5 confers a remarkable cytoprotection toward oxidative stress to mammalian cells. Mitochondrial dysfunction and disruption of Ca2+ homeostasis are implicated in neurodegeneration. Growing evidence supports that endoplasmic reticulum (ER) could operate in tandem with mitochondria to regulate intracellular Ca2+ fluxes in neurodegenerative processes. Here, we overexpressed mitochondrial PRDX5 in SH‐SY5Y cells to dissect the role of this enzyme in 1‐methyl‐4‐phenylpyridinium (MPP)+‐induced cell death. Our data show that mitochondria‐dependent apoptosis triggered by MPP+, assessed by the measurement of caspase‐9 activation and mitochondrial DNA damage, is prevented by mitochondrial PRDX5 overexpression. Moreover, PRDX5 overexpression blocks the increase in intracellular Ca2+, Ca2+‐dependent activation of calpains and Bax cleavage. Finally, using Ca2+ channel inhibitors (Nimodipine, Dantrolene and 2‐APB), we show that Ca2+ release arises essentially from ER stores through 1,4,5‐inositol‐trisphosphate receptors (IP3R). Altogether, our results suggest that the MPP+ mitochondrial pathway of apoptosis is regulated by mitochondrial PRDX5 in a process that could involve redox modulation of Ca2+ transporters via a crosstalk between mitochondria and ER.  相似文献   

6.
It is generally accepted that ultraviolet (UV) radiation can have adverse affects on phototrophic organisms, independent of ozone depletion. The red intertidal seaweed Pyropia cinnamomea W.A. Nelson (previously Porphyra cinnamomea Sutherland et al. 2011), similar to many other intertidal macrophytes, is exposed to high levels of UV radiation on a daily basis due to emersion in the upper littoral zone. It has been shown that seaweeds, like higher plants, respond to an increased activity of antioxidative enzymes when exposed to stress. However, earlier investigations have shown that P. cinnamomea also compensates for stress due to UV radiation by increasing polyamine (PA) levels, especially bound‐soluble and bound‐insoluble PAs. The PA precursor putrescine (PUT) can be synthesized via two enzymatic pathways: arginine decarboxylase (ADC) and ornithine decarboxylase (ODC). Both of these enzymes showed increased activity in P. cinnamomea under UV stress. In higher plants, ADC is the enzyme responsible for increased PA levels during stress exposure, while ODC is correlated with cell division and reproduction. However, there are contrary findings in the literature. Using two irreversible inhibitors, we identified the enzyme most likely responsible for increased PUT synthesis and therefore increased stress tolerance in P. cinnamomea. Our results show that changes in the PA synthesis pathway in P. cinnamomea under UV stress are based on an increased activity of ADC. When either inhibitor was added, lipid hydroperoxide levels increased even under photosynthetically active radiation, suggesting that PAs are involved in protection mechanisms under normal light conditions as well. We also show that under optimum or low‐stress conditions, ODC activity is correlated with PUT synthesis.  相似文献   

7.
The purpose of the present study was to investigate the effect of salidroside (Sal) on myocardial injury in lipopolysaccharide (LPS)‐induced endotoxemic in vitro and in vivo. SD rats were randomly divided into five groups: control group, LPS group (15 mg/kg), LPS plus dexamethasone (2 mg/kg), LPS plus Sal groups with different Sal doses (20, 40 mg/kg). Hemodynamic measurement and haematoxylin and eosin staining were performed. Serum levels of creatine kinase (CK), lactate dehydrogenase, the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH‐px), glutathione, tumour necrosis factor‐α (TNF‐α), interleukin‐6 (IL‐6), and interleukin‐1β (IL‐1β) were measured after the rats were killed. iNOS, COX‐2, NF‐κB and PI3K/Akt/mTOR pathway proteins were detected by Western blot. In vitro, we evaluated the protective effect of Sal on rat embryonic heart‐derived myogenic cell line H9c2 induced by LPS. Reactive oxygen species (ROS) in H9c2 cells was measured by flow cytometry, and the activities of the antioxidant enzymes CAT, SOD, GSH‐px, glutathione‐S‐transferase, TNF‐α, IL‐6 and IL‐1β in cellular supernatant were measured. PI3K/Akt/mTOR signalling was examined by Western blot. As a result, Sal significantly attenuated the above indices. In addition, Sal exerts pronounced cardioprotective effect in rats subjected to LPS possibly through inhibiting the iNOS, COX‐2, NF‐κB and PI3K/Akt/mTOR pathway in vivo. Furthermore, the pharmacological effect of Sal associated with the ROS‐mediated PI3K/Akt/mTOR pathway was proved by the use of ROS scavenger, N‐acetyl‐l ‐cysteine, in LPS‐stimulated H9C2 cells. Our results indicated that Sal could be a potential therapeutic agent for the treatment of cardiovascular disease.  相似文献   

8.
T‐cell receptor (TCR) signaling is essential for the function of T cells and negatively regulated by the E3 ubiquitin–protein ligases CBL and CBLB. Here, we combined mouse genetics and affinity purification coupled to quantitative mass spectrometry to monitor the dynamics of the CBL and CBLB signaling complexes that assemble in normal T cells over 600 seconds of TCR stimulation. We identify most previously known CBL and CBLB interacting partners, as well as a majority of proteins that have not yet been implicated in those signaling complexes. We exploit correlations in protein association with CBL and CBLB as a function of time of TCR stimulation for predicting the occurrence of direct physical association between them. By combining co‐recruitment analysis with biochemical analysis, we demonstrated that the CD5 transmembrane receptor constitutes a key scaffold for CBL‐ and CBLB‐mediated ubiquitylation following TCR engagement. Our results offer an integrated view of the CBL and CBLB signaling complexes induced by TCR stimulation and provide a molecular basis for their negative regulatory function in normal T cells.  相似文献   

9.
10.
11.
12.
Acute fasting induced antidepressant‐like effects. However, the exact brain region and mechanism of these actions are still largely unknown. Therefore, in this study the antidepressant‐like effects of acute fasting on c‐Fos expression and BDNF levels were investigated. Consistent with our previous findings, immobility time was remarkably shortened by 9 hrs fasting in the forced swimming test. Furthermore, these antidepressant‐like effects of 9 fasting were inhibited by a 5‐HT2A/2C receptor agonist (±)‐1‐(2, 5‐dimethoxy‐4‐iodophenyl)‐2‐aminopropane hydrochloride (DOI), and the effect of DOI was blocked by pretreatment with a selective 5‐HT2A receptor antagonist ketanserin. Immunohistochemical study has shown that c‐Fos level was significantly increased by 9 hrs fasting in prefrontal cortex but not hippocampus and habenular. Fasting‐induced c‐Fos expression was further enhanced by DOI in prefrontal cortex, and these enhancements were inhibited by ketanserin. The increased BDNF levels by fasting were markedly inhibited by DOI in frontal cortex and hippocampus, and these effects of DOI on BDNF levels were also blocked by ketanserin. These findings suggest that the antidepressant‐like effects of acute fasting may be exerted via 5‐HT2A receptor and particularly sensitive to neural activity in the prefrontal cortex. Furthermore, these antidepressant‐like effects are also mediated by CREB and BDNF pathway in hippocampus and frontal cortex. Therefore, fasting may be potentially helpful against depression.  相似文献   

13.
Silicosis is an occupational lung disease caused by the inhalation of silica dust and characterized by lung inflammation and fibrosis. Interleukin (IL)‐1β is induced by silica and functions as the key pro‐inflammatory cytokine in this process. The Th17 response, which is induced by IL‐1β, has been reported very important in chronic human lung inflammatory diseases. To elucidate the underlying mechanisms of IL‐1β and IL‐17 in silicosis, we used anakinra and an anti‐IL‐17 monoclonal antibody (mAb) to block the receptor of IL‐1β (IL‐RI) and IL‐17, respectively, in a mouse model of silicosis. We observed increased IL‐1β expression and an enhanced Th17 response after silica instillation. Treatment with an IL‐1 type I receptor (IL‐1RI) antagonist anakinra substantially decreased silica‐induced lung inflammation and the Th17 response. Lung inflammation and the accumulation of inflammatory cells were attenuated in the IL‐17‐neutralized silicosis group. IL‐17 may promote lung inflammation by modulating the differentiation of Th1 and regulatory T cells (Tregs) and by regulating the production of IL‐22 and IL‐1β during the lung inflammation of silicosis. Silica may induce IL‐1β production from alveolar macrophages and promote inflammation by initiating a Th17 response via an IL‐1β/IL‐1RI‐dependent mechanism. The Th17 response could induce lung inflammation during the pathogenesis of silicosis by regulating the homoeostasis of the Th immune responses and affecting the production of IL‐22 and IL‐1β. This study describes a potentially important inflammatory mechanism of silicosis that may bring about novel therapies for this inflammatory and fibrotic disease.  相似文献   

14.
The genetic anomalies associated with the agminated variant of Spitz nevus have so far been limited to HRAS G13R mutations, especially when arising within a nevus spilus. A previous report exposed the case of a man with a giant pigmented macule involving his upper right limb and trunk. Since childhood, Spitz nevi have been periodically arising, within the pigmented area. The histopathology of several lesions displayed the usual criteria of junctional, compound, or intradermal Spitz nevi with a diversity of cytomorphological and architectural features. Some lesions spontaneously regressed. Genetic studies confirmed in three lesions an identical translocation involving TRPM1, PUM1, and LCK. No mutations in HRAS, NRAS, BRAF, or other known fusion genes linked to Spitz nevus were detected. LCK break‐apart fluorescence in situ hybridization confirmed the rearrangement was present not only in the melanocytic proliferation but also in the surrounding non‐spitzoid melanocytes. This report expands the list of genetic alterations involved both in giant congenital macules and in agminated Spitz nevi, and also extends the concept of mosaicism in melanocytes to gene translocations.  相似文献   

15.
16.
17.
Solar ultraviolet (UV) radiation‐induced reactive oxidative species is mainly responsible for the development of photoageing. Rosmarinic acid was one of the main bioactive components detected in Thymus vulgaris (TV) we extracted. In this study, UVB‐induced skin damages have been shown to be ameliorated by treatment with TV in hairless mice (HR‐1) skin, demonstrated by decreased matrix metalloproteinases (MMPs) and increased collagen production. However, the underlying molecular mechanism on which TV acted was unclear. We examined the photoprotective effects of TV against UVB and elucidated the molecular mechanism in normal human dermal fibroblasts. Thymus vulgaris remarkably prevented the UVB‐induced reactive oxygen species and lactate dehydrogenase. Dose‐dependent increase in glutathione, NAD(P)H: quinone oxidoreductase1 and heme oxygenase‐1, by TV was confirmed by increased nuclear accumulation of Nrf2. Furthermore, 5‐Methoxyindole‐2‐carboxylic acid was introduced as a specific inhibitor of dihydrolipoyl dehydrogenase (DLD). We demonstrated that Nrf2 expression was regulated by DLD, which was a tricarboxylic acid cycle‐associated protein that decreased after UVB exposure. Besides, TV significantly diminished UVB induced phosphorylation of mitogen activated protein kinases pathway, containing extracellular signal‐regulated kinase, Jun N‐terminal kinase and p38, which consequently reduced phosphorylated c‐fos and c‐jun. Our results suggest that TV is a potential botanical agent for use against UV radiation‐induced oxidative stress mediated skin damages.  相似文献   

18.
19.
Proliferating cell nuclear antigen (PCNA) plays critical roles in eukaryotic DNA replication and replication‐associated processes. It is typically encoded by one or two gene copies (pcna) in eukaryotic genomes. Recently reported higher copy numbers of pcna in some dinoflagellates raised a question of how this gene has uniquely evolved in this phylum. Through real‐time PCR quantification, we found a wide range of pcna copy number (2–287 copies) in 11 dinoflagellate species (n = 38), and a strong positive correlation between pcna copy number and genome size (log10–log10 transformed). Intraspecific pcna diverged up to 21% and are dominated by nonsynonymous substitutions, indicating strong purifying selection pressure on and hence functional necessity of this gene. By surveying pcna copy numbers in eukaryotes, we observed a genome size threshold at 4 pg DNA, above which more than two pcna copies are found. To examine whether retrotransposition is a mechanism of pcna duplication, we measured the copy number of retroposed pcna, taking advantage of the 22‐nt dinoflagellate‐specific spliced leader (DinoSL) capping the 5′ end of dinoflagellate nuclear‐encoded mRNAs, which would exist in the upstream region of a retroposed gene copy. We found that retroposed pcna copy number increased with total pcna copy number and genome size. These results indicate co‐evolution of dinoflagellate pcna copy number with genome size, and retroposition as a major mechanism of pcna duplication in dinoflagellates. Furthermore, we posit that the demand of faithful replication and maintenance of the large dinoflagellate genomes might have favored the preservation of the retroposed pcna as functional genes.  相似文献   

20.
Aluminium (Al) ions are one of the primary growth‐limiting factors for plants on acid soils, globally restricting agriculture. Despite its impact, little is known about Al action in planta. Earlier work has indicated that, among other effects, Al induces DNA damage. However, the loss of major DNA damage response regulators, such SOG1, partially suppressed the growth reduction in plants seen on Al‐containing media. This raised the question whether Al actually causes DNA damage and, if so, how. Here, we provide cytological and genetic data corroborating that exposure to Al leads to DNA double‐strand breaks. We find that the Al‐induced damage specifically involves homology‐dependent (HR) recombination repair. Using an Al toxicity assay that delivers higher Al concentrations than used in previous tests, we find that sog1 mutants become highly sensitive to Al. This indicates a multi‐level response to Al‐induced DNA damage in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号