首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of the molecular signaling pathways underlying protein synthesis‐dependent forms of synaptic plasticity, such as late long‐term potentiation (L‐LTP ), can provide insights not only into memory expression/maintenance under physiological conditions but also potential mechanisms associated with the pathogenesis of memory disorders. Here, we report in mice that L‐LTP failure induced by the mammalian (mechanistic) target of rapamycin complex 1 (mTORC 1) inhibitor rapamycin is reversed by brain‐specific genetic deletion of PKR ‐like ER kinase, PERK (PERK KO ), a kinase for eukaryotic initiation factor 2α (eIF 2α). In contrast, genetic removal of general control non‐derepressible‐2, GCN 2 (GCN 2 KO ), another eIF 2α kinase, or treatment of hippocampal slices with the PERK inhibitor GSK 2606414, does not rescue rapamycin‐induced L‐LTP failure, suggesting mechanisms independent of eIF 2α phosphorylation. Moreover, we demonstrate that phosphorylation of eukaryotic elongation factor 2 (eEF 2) is significantly decreased in PERK KO mice but unaltered in GCN 2 KO mice or slices treated with the PERK inhibitor. Reduction in eEF 2 phosphorylation results in increased general protein synthesis, and thus could contribute to the mTORC 1‐independent L‐LTP in PERK KO mice. We further performed experiments on mutant mice with genetic removal of eEF 2K (eEF 2K KO ), the only known kinase for eEF 2, and found that L‐LTP in eEF 2K KO mice is insensitive to rapamycin. These data, for the first time, connect reduction in PERK activity with the regulation of translation elongation in enabling L‐LTP independent of mTORC 1. Thus, our findings indicate previously unrecognized levels of complexity in the regulation of protein synthesis‐dependent synaptic plasticity.

Read the Editorial Highlight for this article on page 119 . Cover Image for this issue: doi: 10.1111/jnc.14185 .
  相似文献   

2.
3.
4.
In this report, we describe the localization of diacylglycerol lipase‐α (DAGLα) in nuclei from adult cortical neurons, as assessed by double‐immunofluorescence staining of rat brain cortical sections and purified intact nuclei and by western blot analysis of subnuclear fractions. Double‐labeling assays using the anti‐DAGLα antibody and NeuN combined with Hoechst staining showed that only nuclei of neuronal origin were DAGLα positive. At high resolution, DAGLα‐signal displayed a punctate pattern in nuclear subdomains poor in Hoechst's chromatin and lamin B1 staining. In contrast, SC‐35‐ and NeuN‐signals (markers of the nuclear speckles) showed a high overlap with DAGLα within specific subdomains of the nuclear matrix. Among the members of the phospholipase C‐β (PLCβ) family, PLCβ1, PLCβ2, and PLCβ4 exhibited the same distribution with respect to chromatin, lamin B1, SC‐35, and NeuN as that described for DAGLα. Furthermore, by quantifying the basal levels of 2‐arachidonoylglycerol (2‐AG) by liquid chromatography and mass spectrometry (LC‐MS), and by characterizing the pharmacology of its accumulation, we describe the presence of a mechanism for 2‐AG production, and its PLCβ/DAGLα‐dependent biosynthesis in isolated nuclei. These results extend our knowledge about subcellular distribution of neuronal DAGLα, providing biochemical grounds to hypothesize a role for 2‐AG locally produced within the neuronal nucleus.

  相似文献   


5.
Peripheral myelin protein 22 (PMP 22) is a component of compact myelin in the peripheral nervous system. The amount of PMP 22 in myelin is tightly regulated, and PMP 22 over or under‐expression cause Charcot‐Marie‐Tooth 1A (CMT 1A) and Hereditary Neuropathy with Pressure Palsies (HNPP ). Despite the importance of PMP 22 , its function remains largely unknown. It was reported that PMP 22 interacts with the β4 subunit of the laminin receptor α6β4 integrin, suggesting that α6β4 integrin and laminins may contribute to the pathogenesis of CMT 1A or HNPP . Here we asked if the lack of α6β4 integrin in Schwann cells influences myelin stability in the HNPP mouse model. Our data indicate that PMP 22 and β4 integrin may not interact directly in myelinating Schwann cells, however, ablating β4 integrin delays the formation of tomacula, a characteristic feature of HNPP . In contrast, ablation of integrin β4 worsens nerve conduction velocities and non‐compact myelin organization in HNPP animals. This study demonstrates that indirect interactions between an extracellular matrix receptor and a myelin protein influence the stability and function of myelinated fibers.

  相似文献   

6.
Cellular prion protein (PrPC ) is widely expressed and displays a variety of well‐described functions in the central nervous system (CNS ). Mutations of the PRNP gene are known to promote genetic human spongiform encephalopathies, but the components of gain‐ or loss‐of‐function mutations to PrPC remain a matter for debate. Among the proteins described to interact with PrPC is Stress‐inducible protein 1 (STI 1), a co‐chaperonin that is secreted from astrocytes and triggers neuroprotection and neuritogenesis through its interaction with PrPC . In this work, we evaluated the impact of different PrPC pathogenic point mutations on signaling pathways induced by the STI 1‐PrPC interaction. We found that some of the pathogenic mutations evaluated herein induce partial or total disruption of neuritogenesis and neuroprotection mediated by mitogen‐activated protein kinase (MAPK )/extracellular signal‐regulated kinases 1 and 2 (ERK 1/2) and protein kinase A (PKA ) signaling triggered by STI 1‐PrPC engagement. A pathogenic mutant PrPC that lacked both neuroprotection and neuritogenesis activities fail to promote negative dominance upon wild‐type PrPC . Also, a STI 1‐α7‐nicotinic acetylcholine receptor‐dependent cellular signaling was present in a PrPC mutant that maintained both neuroprotection and neuritogenesis activities similar to what has been previously observed by wild‐type PrPC . These results point to a loss‐of‐function mechanism underlying the pathogenicity of PrPC mutations.

  相似文献   

7.
Biomarkers for α‐synuclein are needed for diagnosis and prognosis in Parkinson's disease (PD ). Endogenous auto‐antibodies to α‐synuclein could serve as biomarkers for underlying synucleinopathy, but previous assessments of auto‐antibodies have shown variability and inconsistent clinical correlations. We hypothesized that auto‐antibodies to α‐synuclein could be diagnostic for PD and explain its clinical heterogeneity. To test this hypothesis, we developed an enzyme‐linked immunosorbent assay for measuring α‐synuclein auto‐antibodies in human samples. We evaluated 69 serum samples (16 healthy controls (HC ) and 53 PD patients) and 145 CSF samples (52 HC and 93 PD patients) from our Institution. Both serum and CSF were available for 24 participants. Males had higher auto‐antibody levels than females in both fluids. CSF auto‐antibody levels were significantly higher in PD patients as compared with HC , whereas serum levels were not significantly different. CSF auto‐antibody levels did not associate with amyloid‐β1–42, total tau, or phosphorylated tau. CSF auto‐antibody levels correlated with performance on the Montreal Cognitive Assessment, even when controlled for CSF amyloidβ1–42. CSF hemoglobin levels, as a proxy for contamination of CSF by blood during lumbar puncture, did not influence these observations. Using recombinant α‐synuclein with N‐ and C‐terminal truncations, we found that CSF auto‐antibodies target amino acids 100 through 120 of α‐synuclein. We conclude that endogenous CSF auto‐antibodies are significantly higher in PD patients as compared with HC , suggesting that they could indicate the presence of underlying synucleinopathy. These auto‐antibodies associate with poor cognition, independently of CSF amyloidβ1–42, and target a select C‐terminal region of α‐synuclein.

Read the Editorial Highlight for this article on page 433 .
  相似文献   

8.
High levels (μM) of beta amyloid (Aβ) oligomers are known to trigger neurotoxic effects, leading to synaptic impairment, behavioral deficits, and apoptotic cell death. The hydrophobic C‐terminal domain of Aβ, together with sequences critical for oligomer formation, is essential for this neurotoxicity. However, Aβ at low levels (pM‐nM) has been shown to function as a positive neuromodulator and this activity resides in the hydrophilic N‐terminal domain of Aβ. An N‐terminal Aβ fragment (1–15/16), found in cerebrospinal fluid, was also shown to be a highly active neuromodulator and to reverse Aβ‐induced impairments of long‐term potentiation. Here, we show the impact of this N‐terminal Aβ fragment and a shorter hexapeptide core sequence in the Aβ fragment (Aβcore: 10–15) to protect or reverse Aβ‐induced neuronal toxicity, fear memory deficits and apoptotic death. The neuroprotective effects of the N‐terminal Aβ fragment and Aβcore on Aβ‐induced changes in mitochondrial function, oxidative stress, and apoptotic neuronal death were demonstrated via mitochondrial membrane potential, live reactive oxygen species, DNA fragmentation and cell survival assays using a model neuroblastoma cell line (differentiated NG108‐15) and mouse hippocampal neuron cultures. The protective action of the N‐terminal Aβ fragment and Aβcore against spatial memory processing deficits in amyloid precursor protein/PSEN1 (5XFAD) mice was demonstrated in contextual fear conditioning. Stabilized derivatives of the N‐terminal Aβcore were also shown to be fully protective against Aβ‐triggered oxidative stress. Together, these findings indicate an endogenous neuroprotective role for the N‐terminal Aβ fragment, while active stabilized N‐terminal Aβcore derivatives offer the potential for therapeutic application.

  相似文献   

9.
In humans a chromosomal hemideletion of the 16p11.2 region results in variable neurodevelopmental deficits including developmental delay, intellectual disability, and features of autism spectrum disorder (ASD). Serotonin is implicated in ASD but its role remains enigmatic. In this study we sought to determine if and how abnormalities in serotonin neurotransmission could contribute to the behavioral phenotype of the 16p11.2 deletion syndrome in a mouse model (Del mouse). As ASD is frequently associated with altered response to acute stress and stress may exacerbate repetitive behavior in ASD, we studied the Del mouse behavior in the context of an acute stress using the forced swim test, a paradigm well characterized with respect to serotonin. Del mice perseverated with active coping (swimming) in the forced swim test and failed to adopt passive coping strategies with time as did their wild‐type littermates. Analysis of monoamine content by HPLC provided evidence for altered endogenous serotonin neurotransmission in Del mice while there was no effect of genotype on any other monoamine. Moreover, we found that Del mice were highly sensitive to the 5‐HT2A antagonists M100907, which at a dose of 0.1 mg/kg normalized their level of active coping and restored the gradual shift to passive coping in the forced swim test. Supporting evidence for altered endogenous serotonin signaling was provided by observations of additional ligand effects including altered forebrain Fos expression. Taken together, these observations indicate notable changes in endogenous serotonin signaling in 16p11.2 deletion mice and support the therapeutic utility of 5‐HT2A receptor antagonists.

  相似文献   

10.
The discoveries of mutations in SNCA were seminal findings that resulted in the knowledge that α‐synuclein (αS) is the major component of Parkinson's disease‐associated Lewy bodies. Since the pathologic roles of these protein inclusions and SNCA mutations are not completely established, we characterized the aggregation properties of the recently identified SNCA mutations, H50Q and G51D, to provide novel insights. The properties of recombinant H50Q, G51D, and wild‐type αS to polymerize and aggregate into amyloid were studied using (trans,trans)‐1‐bromo‐2,5‐bis‐(4‐hydroxy)styrylbenzene fluorometry, sedimentation analyses, electron microscopy, and atomic force microscopy. These studies showed that the H50Q mutation increases the rate of αS aggregation, whereas the G51D mutation has the opposite effect. However, H50Q and G51D αS could still be similarly induced to form intracellular aggregates from the exposure to exogenous amyloidogenic seeds under conditions that promote their cellular entry. Both mutant αS proteins, but especially G51D, promoted cellular toxicity under cellular stress conditions. These findings reveal that the novel pathogenic SNCA mutations, H50Q and G51D, have divergent effects on aggregation properties relative to the wild‐type protein, with G51D αS demonstrating reduced aggregation despite presenting with earlier disease onset, suggesting that these mutants promote different mechanisms of αS pathogenesis.

  相似文献   


11.
Parkinson's disease is the second most common neurodegenerative disease and its pathogenesis is closely associated with oxidative stress. Deposition of aggregated α‐synuclein (α‐Syn) occurs in familial and sporadic forms of Parkinson's disease. Here, we studied the effect of oligomeric α‐Syn on one of the major markers of oxidative stress, lipid peroxidation, in primary co‐cultures of neurons and astrocytes. We found that oligomeric but not monomeric α‐Syn significantly increases the rate of production of reactive oxygen species, subsequently inducing lipid peroxidation in both neurons and astrocytes. Pre‐incubation of cells with isotope‐reinforced polyunsaturated fatty acids (D‐PUFAs) completely prevented the effect of oligomeric α‐Syn on lipid peroxidation. Inhibition of lipid peroxidation with D‐PUFAs further protected cells from cell death induced by oligomeric α‐Syn. Thus, lipid peroxidation induced by misfolding of α‐Syn may play an important role in the cellular mechanism of neuronal cell loss in Parkinson's disease.

  相似文献   


12.
13.
Cell adhesion molecule L1 promotes neuritogenesis and neuronal survival through triggering MAPK pathways. Based on the findings that L1 is associated with casein kinase 2 (CK2), and that deficiency in PTEN promotes neuritogenesis in vitro and regeneration after trauma, we examined the functional relationship between L1 and PTEN. In parallel, we investigated the tumor suppressor p53, which also regulates neuritogenesis. Here, we report that the intracellular domain of L1 binds to the subunit CK2α, and that knockdown of L1 leads to CK2 dephosphorylation and an increase in PTEN and p53 levels. Overexpression of L1, but not the L1 mutants L1 (S1181N, E1184V), which reduced binding between L1 and CK2, reduced expression levels of PTEN and p53 proteins, and enhanced levels of phosphorylated CK2α and mammalian target of rapamycin, which is a downstream effector of PTEN and p53. Treatment of neurons with a CK2 inhibitor or transfection with CK2α siRNA increased levels of PTEN and p53, and inhibited neuritogenesis. The combined observations indicate that L1 downregulates expression of PTEN and p53 via direct binding to CK2α. We suggest that L1 stimulates neuritogenesis by activating CK2α leading to decreased levels of PTEN and p53 via a novel, L1‐triggered and CK2α‐mediated signal transduction pathway.

  相似文献   


14.
15.
Anxiety disorders are associated with a high social burden worldwide. Recently, increasing evidence suggests that nuclear factor kappa B (NF‐κB) has significant implications for psychiatric diseases, including anxiety and depressive disorders. However, the molecular mechanisms underlying the role of NF‐κB in stress‐induced anxiety behaviors are poorly understood. In this study, we show that chronic mild stress (CMS) and glucocorticoids dramatically increased the expression of NF‐κB subunits p50 and p65, phosphorylation and acetylation of p65, and the level of nuclear p65 in vivo and in vitro , implicating activation of NF‐κB signaling in chronic stress‐induced pathological processes. Using the novelty‐suppressed feeding (NSF) and elevated‐plus maze (EPM) tests, we found that treatment with pyrrolidine dithiocarbamate (PDTC; intra‐hippocampal infusion), an inhibitor of NF‐κB, rescued the CMS‐ or glucocorticoid‐induced anxiogenic behaviors in mice. Microinjection of PDTC into the hippocampus reversed CMS‐induced up‐regulation of neuronal nitric oxide synthase (nNOS), carboxy‐terminal PDZ ligand of nNOS (CAPON), and dexamethasone‐induced ras protein 1 (Dexras1) and dendritic spine loss of dentate gyrus (DG) granule cells. Moreover, over‐expression of CAPON by infusing LV‐CAPON‐L‐GFP into the hippocampus induced nNOS‐Dexras1 interaction and anxiety‐like behaviors, and inhibition of NF‐κB by PDTC reduced the LV‐CAPON‐L‐GFP‐induced increases in nNOS‐Dexras1 complex and anxiogenic‐like effects in mice. These findings indicate that hippocampal NF‐κB mediates anxiogenic behaviors, probably via regulating the association of nNOS‐CAPON‐Dexras1, and uncover a novel approach to the treatment of anxiety disorders.

  相似文献   

16.
17.
Tan‐67 is a selective non‐peptidic δ‐opioid receptor (DOR ) agonist that confers neuroprotection against cerebral ischemia/reperfusion (I/R)‐caused neuronal injury in pre‐treated animals. In this study, we examined whether post‐ischemic administration of Tan‐67 in stroke mice is also neuroprotective and whether the treatment affects expression, maturation and processing of the amyloid precursor protein (APP ). A focal cerebral I/R model in mice was induced by middle cerebral artery occlusion for 1 h and Tan‐67 (1.5, 3 or 4.5 mg/kg) was administered via the tail vein at 1 h after reperfusion. Alternatively, naltrindole, a selective DOR antagonist (5 mg/kg), was administered 1 h before Tan‐67 treatment. Our results showed that post‐ischemic administration of Tan‐67 (3 mg/kg or 4.5 mg/kg) was neuroprotective as shown by decreased infarct volume and neuronal loss following I/R. Importantly, Tan‐67 improved animal survival and neurobehavioral outcomes. Conversely, naltrindole abolished Tan‐67 neuroprotection in infarct volume. Tan‐67 treatment also increased APP expression, maturation and processing in the ipsilateral penumbral area at 6 h but decreased APP expression and maturation in the same brain area at 24 h after I/R. Tan‐67‐induced increase in APP expression was also seen in the ischemic cortex at 24 h following I/R. Moreover, Tan‐67 attenuated BACE ‐1 expression, β‐secretase activity and the BACE cleavage of APP in the ischemic cortex at 24 h after I/R, which was abolished by naltrindole. Our data suggest that Tan‐67 is a promising DOR ‐dependent therapeutic agent for treating I/R‐caused disorder and that Tan‐67‐mediated neuroprotection may be mediated via modulating APP expression, maturation and processing, despite an uncertain causative relationship between the altered APP and the outcomes observed.

  相似文献   

18.
The olfm1a and olfm1b genes in zebrafish encode conserved secreted glycoproteins. These genes are preferentially expressed in the brain and retina starting from 16 h post‐fertilization until adulthood. Functions of the Olfm1 gene is still unclear. Here, we produced and analyzed a null zebrafish mutant of both olfm1a and olfm1b genes (olfm1 null). olfm1 null fish were born at a normal Mendelian ratio and showed normal body shape and fertility as well as no visible defects from larval stages to adult. Olfm1 proteins were preferentially localized in the synaptosomes of the adult brain. Olfm1 co‐immunoprecipitated with GluR2 and soluble NSF attachment protein receptor complexes indicating participation of Olfm1 in both pre‐ and post‐synaptic events. Phosphorylation of GluR2 was not changed while palmitoylation of GluR2 was decreased in the brain synaptosomal membrane fraction of olfm1 null compared with wt fish. The levels of GluR2, SNAP25, flotillin1, and VAMP2 were markedly reduced in the synaptic microdomain of olfm1 null brain compared with wt. The internalization of GluR2 in retinal cells and the localization of VAMP2 in brain synaptosome were modified by olfm1 null mutation. This indicates that Olfm1 may regulate receptor trafficking from the intracellular compartments to the synaptic membrane microdomain, partly through the alteration of post‐translational GluR2 modifications such as palmitoylation. Olfm1 may be considered a novel regulator of the composition and function of the α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate receptor complex.

  相似文献   

19.
Cocaine is a recreational drug of abuse that binds to the dopamine transporter, preventing reuptake of dopamine into pre‐synaptic terminals. The increased presence of synaptic dopamine results in stimulation of both pre‐ and post‐synaptic dopamine receptors, considered an important mechanism by which cocaine elicits its reinforcing properties. However, the effects of acute cocaine administration on pre‐synaptic dopamine function remain unclear. Non‐invasive imaging techniques such as positron emission tomography have revealed impaired pre‐synaptic dopamine function in chronic cocaine users. Similar impairments have been seen in animal studies, with microdialysis experiments indicating decreased basal dopamine release. Here we use micro positron emission tomography imaging techniques in mice to measure dopamine synthesis capacity and determine the effect of acute cocaine administration of pre‐synaptic dopamine function. We show that a dose of 20 mg/kg cocaine is sufficient to elicit hyperlocomotor activity, peaking 15–20 min post treatment (p < 0.001). However, dopamine synthesis capacity in the striatum was not significantly altered by acute cocaine treatment (: 0.0097 per min vs. 0.0112 per min in vehicle controls, p > 0.05). Furthermore, expression levels of two key enzymes related to dopamine synthesis, tyrosine hydroxylase and aromatic l ‐amino acid decarboxylase, within the striatum of scanned mice were not significantly affected by acute cocaine pre‐treatment (p > 0.05). Our findings suggest that while the regulation of dopamine synthesis and release in the striatum have been shown to change with chronic cocaine use, leading to a reduced basal tone, these adaptations to pre‐synaptic dopaminergic neurons are not initiated following a single exposure to the drug.

  相似文献   

20.
Changes in the homeostasis of tumor necrosis factor α (TNFα) have been demonstrated in patients and experimental models of amyotrophic lateral sclerosis (ALS). However, the contribution of TNFα to the development of ALS is still debated. TNFα is expressed by glia and neurons and acts through the membrane receptors TNFR1 and TNFR2, which may have opposite effects in neurodegeneration. We investigated the role of TNFα and its receptors in the selective motor neuron death in ALS in vitro and in vivo. TNFR2 expressed by astrocytes and neurons, but not TNFR1, was implicated in motor neuron loss in primary SOD1‐G93A co‐cultures. Deleting TNFR2 from SOD1‐G93A mice, there was partial but significant protection of spinal motor neurons, sciatic nerves, and tibialis muscles. However, no improvement of motor impairment or survival was observed. Since the sciatic nerves of SOD1‐G93A/TNFR2?/? mice showed high phospho‐TAR DNA‐binding protein 43 (TDP‐43) accumulation and low levels of acetyl‐tubulin, two indices of axonal dysfunction, the lack of symptom improvement in these mice might be due to impaired function of rescued motor neurons. These results indicate the interaction between TNFR2 and membrane‐bound TNFα as an innovative pathway involved in motor neuron death. Nevertheless, its inhibition is not sufficient to stop disease progression in ALS mice, underlining the complexity of this pathology.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号