首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The rodent retina undergoes considerable postnatal neurogenesis and phenotypic differentiation, and it is likely that diffusible neurotrophic factors contribute to this development and to the subsequent formation of functional retinal circuitry. Accordingly, perturbation of specific neurotrophin ligand–receptor interactions has provided valuable information as to the fundamental processes underlying this development. In the present studies we have built upon our previous observation that suppression of expression of trkB, the high‐affinity receptor for brain‐derived neurotrophic factor (BDNF), in the postnatal rat retina results in the alteration of a specific interneuron in the rod pathway—the parvalbumin (PV)‐immunoreactive AII amacrine cell. Here, we isolated retinas from newborn rats and maintained them in organotypic culture for up to 14 days (approximating the time of eye opening, in vivo) in the presence of individual neurotrophins [BDNF or nerve growth factor (NGF)]. We then examined histological sections of cultures for PV immunoreactivity. In control cultures, only sparse PV‐immunostained cells were observed. In cultures supplemented with NGF, numerous lightly immunostained somata were present in the inner nuclear layer (INL) at the border of the inner plexiform layer (IPL). Many of these cells had rudimentary dendritic arborizations in the IPL. Cultures supplemented with BDNF displayed numerous well‐immunostained somata at the INL/IPL border that gave rise to elaborate dendritic arborizations that approximated the morphology of mature AII amacrine cells in vivo. These observations indicate that neurotrophins have specific effects upon the neurochemical and, perhaps, morphological differentiation of an important interneuron in a specific functional retinal circuit. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 376–384, 1999  相似文献   

4.
5.
6.
7.
Brain‐derived neurotrophic factor (BDNF) signaling is implicated in the etiology of many psychiatric disorders associated with altered emotional processing. Altered peripheral (plasma) BDNF levels have been proposed as a biomarker for neuropsychiatric disease risk in humans. However, the relationship between peripheral and central BDNF levels and emotional brain activation is unknown. We used heterozygous BDNF knockdown rats (BDNF+/?) to examine the effects of genetic variation in the BDNF gene on peripheral and central BDNF levels and emotional brain activation as assessed by awake functional magnetic resonance imaging (fMRI). BDNF+/? and control rats were trained to associate a flashing light (conditioned stimulus; CS) with foot‐shock, and brain activation in response to the CS was measured 24 h later in awake rats using fMRI. Central and peripheral BDNF levels were decreased in BDNF+/? rats compared with control rats. Activation of fear circuitry (amygdala, periaqueductal gray, granular insular) was seen in control animals; however, activation of this circuitry was absent in BDNF+/? animals. Behavioral experiments confirmed impaired conditioned fear responses in BDNF+/? rats, despite intact innate fear responses. These data confirm a positive correlation [r = 0.86, 95% confidence interval (0.55, 0.96); P = 0.0004] between peripheral and central BDNF levels and indicate a functional relationship between BDNF levels and emotional brain activation as assessed by fMRI. The results demonstrate the use of rodent fMRI as a sensitive tool for measuring brain function in preclinical translational studies using genetically modified rats and support the use of peripheral BDNF as a biomarker of central affective processing.  相似文献   

8.
9.
Impaired fear memory extinction (Ext) is one of the hallmark symptoms of post‐traumatic stress disorder (PTSD). However, since the precise mechanism of impaired Ext remains unknown, effective interventions have not yet been established. Recently, hippocampal‐prefrontal brain‐derived neurotrophic factor (BDNF) activity was shown to be crucial for Ext in naïve rats. We therefore examined whether decreased hippocampal‐prefrontal BDNF activity is also involved in the Ext of rats subjected to a single prolonged stress (SPS) as a model of PTSD. BDNF levels were measured by enzyme‐linked immunosorbent assay (ELISA), and phosphorylation of TrkB was measured by immunohistochemistry in the hippocampus and medial prefrontal cortex (mPFC) of SPS rats. We also examined whether BDNF infusion into the ventral mPFC or hippocampus alleviated the impaired Ext of SPS rats in the contextual fear conditioning paradigm. SPS significantly decreased the levels of BDNF in both the hippocampus and mPFC and TrkB phosphorylation in the ventral mPFC. Infusion of BDNF 24 hours after conditioning in the infralimbic cortex (ILC), but not the prelimbic cortex (PLC) nor hippocampus, alleviated the impairment of Ext. Since amelioration of impaired Ext by BDNF infusion did not occur without extinction training, it seems the two interventions must occur consecutively to alleviate impaired Ext. Additionally, BDNF infusion markedly increased TrkB phosphorylation in the ILC of SPS rats. These findings suggest that decreased BDNF signal transduction might be involved in the impaired Ext of SPS rats, and that activation of the BDNF‐TrkB signal might be a novel therapeutic strategy for the impaired Ext by stress.  相似文献   

10.
11.
12.
13.
The actions of neurotrophic factors on sensory neurons of the adult nodose ganglion were studied in vitro. The ganglia were explanted in an extracellular matrix–based gel that permitted observation of the growing axons. Neurotrophin‐4 (NT‐4) was a very efficient stimulator of outgrowth of axons from the nodose ganglion and had almost doubled the outgrowth length when this was analyzed after 2 days in culture. Brain‐derived neurotrophic factor also stimulated outgrowth, but to a lesser degree, whereas NT‐3 gave only weak stimulatory tendencies. Nerve growth factor and glial cell line–derived neurotrophic factor both lacked stimulatory effects. NT‐4 is known to act via TrkB receptors, and the presence of these on growing nodose neurons was demonstrated immunohistochemically. In line with a Trk‐mediated growth effect, the NT‐4 stimulation was abolished by K252a, a selective inhibitor of neurotrophin receptor–associated tyrosine kinase activity. K252a had no effect on the unstimulated preparation. NT‐4 treatment led to activation of the mitogen‐activated protein kinase and inhibition of the latter pathway by PD98059 significantly reduced the NT‐4 stimulated outgrowth, whereas the drug had no effect on the unstimulated growth. In conclusion, the data suggest that NT‐4 can serve as a powerful growth factor for neurons of adult nodose ganglia and that the growth stimulation involves TrkB‐ and mitogen‐activated protein kinase. © 2000 John Wiley & Sons, Inc. J Neurobiol 45: 142–151, 2000  相似文献   

14.
15.
16.
Neuroimaging studies have linked the methionine (Met) allele of the brain‐derived neurotrophic factor (BDNF) gene to abnormal regional brain volumes in several psychiatric and neurodegenerative diseases. However, no neuroimaging studies assessed the effects of this allele on brain morphology in alcohol use disorders and its demonstrated change during abstinence from alcohol. Here we assessed the effects of the BDNF Val66Met (rs6265) polymorphism on regional brain tissue volumes and their recovery during short‐term abstinence in treatment‐seeking alcohol‐dependent individuals. 3D T1 weighted magnetic resonance images from 62 individuals were acquired at 1.5 T at one week of abstinence from alcohol; 41 of the participants were rescanned at 5 weeks of abstinence. The images were segmented into gray matter (GM), white matter (WM) and cerebrospinal fluid and parcellated into regional volumes. The BDNF genotype was determined from blood samples using the TaqMan technique. Alcohol‐dependent Val (Valine)/Met heterozygotes and Val homozygotes had similar regional brain volumes at either time point. However, Val homozygotes had significant GM volume increases, while Val/Met heterozygotes increased predominantly in WM volumes over the scan interval. Longitudinal increases in GM but not WM volumes were related to improvements in neurocognitive measures during abstinence. The findings suggest that functionally significant brain tissue volume recovery during abstinence from alcohol is influenced by BDNF genotype.  相似文献   

17.
18.
In situations of hypoxia, glutamate excitotoxicity induces neuronal death. The release of extracellular adenosine is also triggered and is accompanied by an increase of the stress mediator, corticotrophin‐releasing factor (CRF). Adenosine A2A receptors contribute to glutamate excitoxicity and their blockade is effective in stress‐induced neuronal deficits, but the involvement of CRF on this effect was never explored. We now evaluated the interaction between A2A and CRF receptors (CRFR) function, upon glutamate insult. Primary rat cortical neuronal cultures (9 days in vitro) expressing both CRF1R and CRF2R were challenged with glutamate (20–1000 μM, 24 h). CRF1R was found to co‐localize with neuronal markers and CRF2R to be present in both neuronal and glial cells. The effects of the CRF and A2A receptors ligands on cell viability were measured using propidium iodide and Syto‐13 fluorescence staining. Glutamate decreased cell viability in a concentration‐dependent manner. Urocortin (10 pM), an agonist of CRF receptors, increased cell survival in the presence of glutamate. This neuroprotective effect was abolished by blocking either CRF1R or CRF2R with antalarmin (10 nM) or anti‐Sauvagine‐30 (10 nM), respectively. The blockade of A2A receptors with a selective antagonist SCH 58261 (50 nM) improved cell viability against the glutamate insult. This effect was dependent on CRF2R, but not on CRF1R activation. Overall, these data show a protective role of CRF in cortical neurons, against glutamate‐induced death. The neuroprotection achieved by A2A receptors blockade requires CRF2R activation. This interaction between the adenosine and CRF receptors can explain the beneficial effects of using A2A receptor antagonists against stress‐induced noxious effects.  相似文献   

19.
Different studies have demonstrated the importance of micronutrients, such as vitamins, for normal adult brain function and development. Vitamin C is not synthesized in the brain, but high levels are detected in this organ because of the existence of specific uptake mechanisms, which concentrate ascorbic acid from the bloodstream to the cerebrospinal fluid and then into neurons and glial cells. Two different isoforms of sodium–vitamin C cotransporters (SVCT1 and SVCT2) have been cloned. SVCT2 expression has been observed in the adult hippocampus and cortical neurons by in situ hybridization. In addition, the localization of SVCT2 in the rat fetal brain has been studied by immunohistochemistry and in situ hybridization, demonstrating that SVCT2 is highly expressed in the ventricular and subventricular areas of the brain cortex. However, there are currently no immunohistochemical data regarding SVCT2 expression and function in the post‐natal brain. Therefore, we analyzed SVCT2 expression in the developing brain cortex of mice, and demonstrated an increase in SVCT2 mRNA in mice at 1–15 days of age. The expression of a short isoform, SVCT2sh, was also detected within the same period. SVCT2 expression was concentrated in neurons within the inner layer of the brain cortex. Both SVCT2 isoforms were coexpressed in N2a cells to obtain functional data. Fluorescence resonance energy transfer analysis revealed a molecular interaction between SVCT2wt and SVCT2sh. Finally, differences in transport ratios suggested that SVCT2sh expression inhibited ascorbic acid uptake in N2a cells when both isoforms were coexpressed.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号