共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic variants of nuclear factor erythroid‐derived 2‐like 2 associated with the complications in Han descents with type 2 diabetes mellitus of Northeast China 下载免费PDF全文
Xiaohong Xu Jing Sun Xiaomin Chang Ji Wang Manyu Luo Kupper A. Wintergerst Lining Miao Lu Cai 《Journal of cellular and molecular medicine》2016,20(11):2078-2088
2.
3.
4.
The effect of nuclear factor erythroid 2‐related factor/antioxidant response element signalling pathway in the lanthanum chloride‐induced impairment of learning and memory in rats 下载免费PDF全文
Lijin Zhang Jinghua Yang Cuihong Jin Shengwen Wu Xiaobo Lu Xiaoyu Hu Yaling Sun Yuan Cai 《Journal of neurochemistry》2017,140(3):463-475
5.
6.
Shaolong Zhang Xiuli Yi Xin Su Zhe Jian Tingting Cui Sen Guo Tianwen Gao Chunying Li Shuli Li Qian Xiao 《Journal of cellular and molecular medicine》2019,23(8):5193-5199
Vitiligo is a common skin depigmenting disorder characterized by the loss of functional melanocytes. Its pathogenesis is complicated and oxidative stress plays a critical role in the development of vitiligo. Thus, antioxidant therapy is a promising therapeutic strategy to prevent or even reverse the progression of depigmentation. Ginkgo biloba extract EGb761 has been confirmed to have protective effects on neurons against oxidative stress. Notably, several clinical trials have shown that patients with stable vitiligo achieved repigmentation after taking EGb761. However, the exact mechanism underlying the protective effects of EGb761 on melanocytes against oxidative stress has not been fully elucidated. In the present study, we found that EGb761 effectively protected melanocytes against oxidative stress‐induced apoptosis and alleviated the excessive accumulation of reactive oxygen species (ROS) and lipid peroxidation by enhancing the activity of antioxidative enzymes. Furthermore, the antioxidative effect of EGb761 was achieved by activating Nrf2 and its downstream antioxidative genes. In addition, interfering Nrf2 with siRNA abolished the protective effects of EGb761 on melanocytes against oxidative damage. In conclusion, our study proves that EGb761 could protect melanocytes from H2O2‐induced oxidative stress by activating Nrf2. Therefore, EGb761 is supposed to be a potential therapeutic agent for vitiligo. 相似文献
7.
8.
Rong Xie Shaodong Chen Fang Li Liu Yang Bangliang Yu 《Journal of biochemical and molecular toxicology》2023,37(2):e23251
Nonalcoholic fatty liver disease (NAFLD) originates from the hepatopathy of fatty liver. Pirfenidone is a novel broad-spectrum anti-fibrosis agent used for treating various kinds of tissue fibrosis. The present study will evaluate the effects of Pirfenidone on liver injury in high-fat diet (HFD)-fed mice to evaluate the value of Pirfenidone in treating NAFLD. The pathology of NAFLD was simulated by feeding mice with an HFD in the present study, followed by treating the HFD mice with 150 and 300 mg/kg/day Pirfenidone once a day. The pathological state of HFD mice was identified by the elevated liver weight, promoted serum triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels, declined serum high-density lipoprotein cholesterol (HDL-C) levels, increased alanine aminotransferase and aspartate aminotransferase activity, and histopathological changes to the liver tissues, all of which were dramatically ameliorated by 150 and 300 mg/kg Pirfenidone administration. Furthermore, the excessive production of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-6, as well as upregulated phosphorylated nuclear factor kappa-B (p- NF-κB p65), were observed in HFD-fed mice, but significantly reversed by Pirfenidone. Finally, activated oxidative stress, identified by promoted malondialdehyde (MDA) levels and declined catalase (CAT) activity, was observed in HFD-fed mice, accompanied by the downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and sterol-regulatory element-binding proteins-1c (SREBP-1c). After the treatment with Pirfenidone, oxidative stress was greatly mitigated. Our results imply that Pirfenidone ameliorated the progression of NAFLD by mediating inflammation and oxidative stress. 相似文献
9.
10.
11.
Reactive oxygen species (ROS) and the heat stress response of Daphnia pulex: ROS‐mediated activation of hypoxia‐inducible factor 1 (HIF‐1) and heat shock factor 1 (HSF‐1) and the clustered expression of stress genes 下载免费PDF全文
Eva Klumpen Nadine Hoffschröer Bettina Zeis Ulrike Gigengack Elias Dohmen Rüdiger J. Paul 《Biology of the cell / under the auspices of the European Cell Biology Organization》2017,109(1):39-64
12.
13.
Aldehyde dehydrogenase 2 activation ameliorates CCl4‐induced chronic liver fibrosis in mice by up‐regulating Nrf2/HO‐1 antioxidant pathway 下载免费PDF全文
Xin Ma Qin Luo Hong Zhu Xuejing Liu Zhen Dong Kaili Zhang Yunzeng Zou Jian Wu Junbo Ge Aijun Sun 《Journal of cellular and molecular medicine》2018,22(8):3965-3978
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is critical in the pathogenesis of alcoholic liver cirrhosis. However, the effect of ALHD2 on liver fibrosis remains to be further elucidated. This study aimed to demonstrate whether ALDH2 regulates carbon tetrachloride (CCl4)‐induced liver fibrosis and to investigate the efficacy of Alda‐1, a specific activator of ALDH2, on attenuating liver fibrosis. ALDH2 expression was increased after chronic CCl4 exposure. ALDH2 deficiency accentuated CCl4‐induced liver fibrosis in mice, accompanied by increased expression of collagen 1α1, α‐SMA and TIMP‐1. Moreover, ALDH2 knockout triggered more ROS generation, hepatocyte apoptosis and impaired mitophagy after CCl4 treatment. In cultured HSC‐T6 cells, ALDH2 knockdown by transfecting with lentivirus vector increased ROS generation and α‐SMA expression in an in vitro hepatocyte fibrosis model using TGF‐β1. ALDH2 overexpression by lentivirus or activation by Alda‐1 administration partly reversed the effect of TGF‐β1, whereas ALDH2 knockdown totally blocked the protective effect of Alda‐1. Furthermore, Alda‐1 administration protected against liver fibrosis in vivo, which might be mediated through up‐regulation of Nrf2/HO‐1 cascade and activation of Parkin‐related mitophagy. These findings indicate that ALDH2 deficiency aggravated CCl4‐induced hepatic fibrosis through ROS overproduction, increased apoptosis and mitochondrial damage, whereas ALDH2 activation through Alda‐1 administration alleviated hepatic fibrosis partly through activation of the Nrf2/HO‐1 antioxidant pathway and Parkin‐related mitophagy, which indicate ALDH2 as a promising anti‐fibrotic target and Alda‐1 as a potential therapeutic agent in treating CCl4‐induced liver fibrosis. 相似文献
14.
Amyloid β‐induced astrogliosis is mediated by β1‐integrin via NADPH oxidase 2 in Alzheimer's disease 下载免费PDF全文
Ane Wyssenbach Tania Quintela Francisco Llavero Jose L. Zugaza Carlos Matute Elena Alberdi 《Aging cell》2016,15(6):1140-1152
Astrogliosis is a hallmark of Alzheimer′s disease (AD) and may constitute a primary pathogenic component of that disorder. Elucidation of signaling cascades inducing astrogliosis should help characterizing the function of astrocytes and identifying novel molecular targets to modulate AD progression. Here, we describe a novel mechanism by which soluble amyloid‐β modulates β1‐integrin activity and triggers NADPH oxidase (NOX)‐dependent astrogliosis in vitro and in vivo. Amyloid‐β oligomers activate a PI3K/classical PKC/Rac1/NOX pathway which is initiated by β1‐integrin in cultured astrocytes. This mechanism promotes β1‐integrin maturation, upregulation of NOX2 and of the glial fibrillary acidic protein (GFAP) in astrocytes in vitro and in hippocampal astrocytes in vivo. Notably, immunochemical analysis of the hippocampi of a triple‐transgenic AD mouse model shows increased levels of GFAP, NOX2, and β1‐integrin in reactive astrocytes which correlates with the amyloid β‐oligomer load. Finally, analysis of these proteins in postmortem frontal cortex from different stages of AD (II to V/VI) and matched controls confirmed elevated expression of NOX2 and β1‐integrin in that cortical region and specifically in reactive astrocytes, which was most prominent at advanced AD stages. Importantly, protein levels of NOX2 and β1‐integrin were significantly associated with increased amyloid‐β load in human samples. These data strongly suggest that astrogliosis in AD is caused by direct interaction of amyloid β oligomers with β1‐integrin which in turn leads to enhancing β1‐integrin and NOX2 activity via NOX‐dependent mechanisms. These observations may be relevant to AD pathophysiology. 相似文献
15.
16.
17.
18.
19.