首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been well‐known that hypothalamic orexigenic neuropeptides, orexin‐A, and melanin‐concentrating hormone (MCH), play important roles in regulation of gastric function. However, what neural pathway mediated by the two neuropeptides affects the gastric function remains unknown. In this study, by way of nucleic stimulation and extracellular recording of single unit electrophysiological properties, we found that electrically stimulating the lateral hypothalamic area (LH) or microinjection of orexin‐A into the arcuate nucleus (ARC) excited most gastric distension‐responsive neurons in the nuclei and enhanced the gastric function including motility, emptying, and acid secretion of conscious rats. The results indicated that LH‐ARC orexin‐A‐ergic projections may exist and the orexin‐A in the ARC affected afferent and efferent signal transmission between ARC and stomach. As expected, combination of retrograde tracing and immunohistochemistry showed that some orexin‐A‐ergic neurons projected from the LH to the ARC. In addition, microinjection of MCH and its receptor antagonist PMC‐3881‐PI into the ARC affected the role of orexin‐A in the ARC, indicating a possible involvement of the MCH pathway in the orexin‐A role. Our findings suggest that there was an orexin‐A‐ergic pathway between LH and ARC which participated in transmitting information between the central nuclei and the gastrointestinal tract and in regulating the gastric function of rats.

  相似文献   

2.
Orexin/hypocretin neurons of the lateral hypothalamus and perifornical area are integrators of physiological function. Previous work from our laboratory and others has shown the importance of orexin transmission in cognition. Age‐related reductions in markers of orexin function further suggest that this neuropeptide may be a useful target for the treatment of age‐related cognitive dysfunction. Intranasal administration of orexin‐A (OxA) has shown promise as a therapeutic option for cognitive dysfunction. However, the neurochemical mechanisms of intranasal OxA administration are not fully understood. Here, we use immunohistochemistry and in vivo microdialysis to define the effects of acute intranasal OxA administration on: (i) activation of neuronal populations in the cortex, basal forebrain, and brainstem and (ii) acetylcholine (AC h) and glutamate efflux in the prefrontal cortex (PFC ) of Fischer 344/Brown Norway F1 rats. Acute intranasal administration of OxA significantly increased c‐Fos expression, a marker for neuronal activation, in the PFC and in subpopulations of basal forebrain cholinergic neurons. Subsequently, we investigated the effects of acute intranasal OxA on neurotransmitter efflux in the PFC and found that intranasal OxA significantly increased both AC h and glutamate efflux in this region. These findings were independent from any changes in c‐Fos expression in orexin neurons, suggesting that these effects are not resultant from direct activation of orexin neurons. In total, these data indicate that intranasal OxA may enhance cognition through activation of distinct neuronal populations in the cortex and basal forebrain and through increased neurotransmission of AC h and glutamate in the PFC .

  相似文献   

3.
4.
Paclitaxel is a chemotherapeutic agent widely used for treating carcinomas. Patients receiving paclitaxel often develop neuropathic pain and have a reduced quality of life which hinders the use of this life‐saving drug. In this study, we determined the role of GABA transporters in the genesis of paclitaxel‐induced neuropathic pain using behavioral tests, electrophysiology, and biochemical techniques. We found that tonic GABA receptor activities in the spinal dorsal horn were reduced in rats with neuropathic pain induced by paclitaxel. In normal controls, tonic GABA receptor activities were mainly controlled by the GABA transporter GAT‐1 but not GAT‐3. In the spinal dorsal horn, GAT‐1 was expressed at presynaptic terminals and astrocytes while GAT‐3 was only expressed in astrocytes. In rats with paclitaxel‐induced neuropathic pain, the protein expression of GAT‐1 was increased while GAT‐3 was decreased. This was concurrently associated with an increase in global GABA uptake. The paclitaxel‐induced attenuation of GABAergic tonic inhibition was ameliorated by blocking GAT‐1 but not GAT‐3 transporters. Paclitaxel‐induced neuropathic pain was significantly attenuated by the intrathecal injection of a GAT‐1 inhibitor. These findings suggest that targeting GAT‐1 transporters for reversing disinhibition in the spinal dorsal horn may be a useful approach for treating paclitaxel‐induced neuropathic pain.

  相似文献   


5.
One carbon metabolism is regulated by the availability of nutrients known as methyl donors, and disruption of this pathway can affect multiple physiological systems. DNA methylation, critical for the regulation of gene expression, is linked to one carbon metabolism, and can be altered by perinatal diet. In this study, dams (n  = 12/group) were fed HF or standard control (SC ) diet through pregnancy and lactation, and male and female offspring were then fed either SC or methyl donor‐supplemented diet (MDS ) between 3 and 6 weeks of age (n  = 20–26/group). Concentration of one carbon intermediates and other related metabolites were assessed within brain tissue (prefrontal cortex, PFC ) through the use of mass spectrometry at 6 weeks of age. In addition, the expression of target genes and enzymes that participate in DNA methylation or are relevant to one carbon metabolism were measured. We found that MDS increases the concentration of folate intermediates in the PFC , and that this increase is blunted in male offspring from dams fed a HF diet. In addition, perinatal HF diet increased the concentration of cysteine in the PFC of both male and female offspring, consistent with oxidative stress. Furthermore, both maternal HF diet and postnatal MDS altered global DNA methylation in the PFC in males but not females. Collectively, these data demonstrate sex differences in changes in one carbon metabolites in the prefrontal cortex in response to early life high fat diet and methyl donor supplementation.

Read the Editorial Highlight for this article on page 358
  相似文献   

6.
7.
Lower levels of the cognitively beneficial docosahexaenoic acid (DHA) are often observed in Alzheimer's disease (AD) brains. Brain DHA levels are regulated by the blood‐brain barrier (BBB) transport of plasma‐derived DHA, a process facilitated by fatty acid‐binding protein 5 (FABP5). This study reports a 42.1 ± 12.6% decrease in the BBB transport of 14C‐DHA in 8‐month‐old AD transgenic mice (APPswe,PSEN1?E9) relative to wild‐type mice, associated with a 34.5 ± 6.7% reduction in FABP5 expression in isolated brain capillaries of AD mice. Furthermore, short‐term spatial and recognition memory deficits were observed in AD mice on a 6‐month n‐3 fatty acid‐depleted diet, but not in AD mice on control diet. This intervention led to a dramatic reduction (41.5 ± 11.9%) of brain DHA levels in AD mice. This study demonstrates FABP5 deficiency and impaired DHA transport at the BBB are associated with increased vulnerability to cognitive deficits in mice fed an n‐3 fatty acid‐depleted diet, in line with our previous studies demonstrating a crucial role of FABP5 in BBB transport of DHA and cognitive function.

  相似文献   

8.
9.
10.
Radiotherapy is the major treatment modality for primary and metastatic brain tumors which involves the exposure of brain to ionizing radiation. Ionizing radiation can induce various detrimental pathophysiological effects in the adult brain, and Alzheimer's disease and related neurodegenerative disorders are considered to be late effects of radiation. In this study, we investigated whether ionizing radiation causes changes in tau phosphorylation in cultured primary neurons similar to that in Alzheimer's disease. We demonstrated that exposure to 0.5 or 2 Gy γ rays causes increased phosphorylation of tau protein at several phosphorylation sites in a time‐ and dose‐dependent manner. Consistently, we also found ionizing radiation causes increased activation of GSK3β, c‐Jun N‐terminal kinase and extracellular signal‐regulated kinase before radiation‐induced increase in tau phosphorylation. Specific inhibitors of these kinases almost fully blocked radiation‐induced tau phosphorylation. Our studies further revealed that oxidative stress plays an important role in ionizing radiation‐induced tau phosphorylation, likely through the activation of c‐Jun N‐terminal kinase and extracellular signal‐regulated kinase, but not GSK3β. Overall, our studies suggest that ionizing radiation may cause increased risk for development of Alzheimer's disease by promoting abnormal tau phosphorylation.

  相似文献   


11.
Parkinson's disease is the second most common neurodegenerative disease and its pathogenesis is closely associated with oxidative stress. Deposition of aggregated α‐synuclein (α‐Syn) occurs in familial and sporadic forms of Parkinson's disease. Here, we studied the effect of oligomeric α‐Syn on one of the major markers of oxidative stress, lipid peroxidation, in primary co‐cultures of neurons and astrocytes. We found that oligomeric but not monomeric α‐Syn significantly increases the rate of production of reactive oxygen species, subsequently inducing lipid peroxidation in both neurons and astrocytes. Pre‐incubation of cells with isotope‐reinforced polyunsaturated fatty acids (D‐PUFAs) completely prevented the effect of oligomeric α‐Syn on lipid peroxidation. Inhibition of lipid peroxidation with D‐PUFAs further protected cells from cell death induced by oligomeric α‐Syn. Thus, lipid peroxidation induced by misfolding of α‐Syn may play an important role in the cellular mechanism of neuronal cell loss in Parkinson's disease.

  相似文献   


12.
The attribution of incentive salience to reward‐predictive stimuli has been shown to be associated with substance abuse‐like behavior such as increased drug taking. Evidence suggests that glutamate neurotransmission and sequential N‐methyl‐D‐aspartate (NMDA) activation are involved in the attribution of incentive salience. Here, we further explore the role of second‐by‐second glutamate neurotransmission in the attribution of incentive salience to reward‐predictive stimuli by measuring sign‐tracking behavior during a Pavlovian conditioned approach procedure using ceramic‐based microelectrode arrays configured for sensitive measures of extracellular glutamate in awake behaving Sprague‐Dawley rats. Specifically, we show that there is an increase in extracellular glutamate levels in the prelimbic cortex (PrL) and the nucleus accumbens core (NAcC) during sign‐tracking behavior to a food‐predictive conditioned stimulus (CS+) compared to the presentation of a non‐predictive conditioned stimulus (CS?). Furthermore, the results indicate greater increases in extracellular glutamate levels in the PrL compared to NAcC in response to the CS+, including differences in glutamate release and signal decay. Taken together, the present research suggests that there is differential glutamate signaling in the NAcC and PrL during sign‐tracking behavior to a food‐predictive CS+.

  相似文献   

13.
14.
Zinc has been implicated in neurodegeneration following ischemia. In analogy with calcium, zinc has been proposed to induce toxicity via mitochondrial dysfunction, but the relative role of each cation in mitochondrial damage remains unclear. Here, we report that under conditions mimicking ischemia in hippocampal neurons – normal (2 mM) calcium plus elevated (> 100 μM) exogenous zinc – mitochondrial dysfunction evoked by glutamate, kainate or direct depolarization is, despite significant zinc uptake, primarily governed by calcium. Thus, robust mitochondrial ion accumulation, swelling, depolarization, and reactive oxygen species generation were only observed after toxic stimulation in calcium‐containing media. This contrasts with the lack of any mitochondrial response in zinc‐containing but calcium‐free medium, even though zinc uptake and toxicity were strong under these conditions. Indeed, abnormally high, ionophore‐induced zinc uptake was necessary to elicit any mitochondrial depolarization. In calcium‐ and zinc‐containing media, depolarization‐induced zinc uptake facilitated cell death and enhanced accumulation of mitochondrial calcium, which localized to characteristic matrix precipitates. Some of these contained detectable amounts of zinc. Together these data indicate that zinc uptake is generally insufficient to trigger mitochondrial dysfunction, so that mechanism(s) of zinc toxicity must be different from that of calcium.

  相似文献   


15.
Aging and the presence of cerebrovascular disease are associated with increased incidence of Alzheimer's disease. A common feature of aging and cerebrovascular disease is decreased endothelial nitric oxide (NO). We studied the effect of a loss of endothelium derived NO on amyloid precursor protein (APP) related phenotype in late middle aged (LMA) (14–15 month) endothelial nitric oxide synthase deficient (eNOS?/?) mice. APP, β‐site APP cleaving enzyme (BACE) 1, and amyloid beta (Aβ) levels were significantly higher in the brains of LMA eNOS?/? mice as compared with LMA wild‐type controls. APP and Aβ1‐40 were increased in hippocampal tissue of eNOS?/? mice as compared with wild‐type mice. LMA eNOS?/? mice displayed an increased inflammatory phenotype as compared with LMA wild‐type mice. Importantly, LMA eNOS?/? mice performed worse in a radial arm maze test of spatial learning and memory as compared with LMA wild‐type mice. These data suggest that chronic loss of endothelial NO may be an important contributor to both Aβ related pathology and cognitive decline.

  相似文献   


16.
This editorial highlights an article by McKee and colleagues in the current issue of Journal of Neurochemistry, in which the authors report epigenetic changes linked to one‐carbon metabolism in prefrontal cortex (PFC) of murine offspring from dams fed high‐fat diet to mimic maternal obesity. The group found that high‐fat diet feeding in utero increases weight gain in offspring and dynamically alters DNA methylation in the PFC of male but not female brains. These epigenetic marks were associated with a shift in brain one‐carbon metabolism (folate and methionine) intermediates and were normalized by early‐life methyl‐donor supplementation in a sex‐specific manner.

  相似文献   


17.
α1‐adrenoceptors (α1‐ARs) stimulation has been found to enhance excitatory processes in many brain regions. A recent study in our laboratory showed that α1‐ARs stimulation enhances glutamatergic transmission via both pre‐ and post‐synaptic mechanisms in layer V/VI pyramidal cells of the rat medial prefrontal cortex (mPFC). However, a number of pre‐synaptic mechanisms may contribute to α1‐ARs‐induced enhancement of glutamate release. In this study, we blocked the possible post‐synaptic action mediated by α1‐ARs to investigate how α1‐ARs activation regulates pre‐synaptic glutamate release in layer V/VI pyramidal neurons of mPFC. We found that the α1‐ARs agonist phenylephrine (Phe) induced a significant enhancement of glutamatergic transmission. The Phe‐induced potentiation was mediated by enhancing pre‐synaptic glutamate release probability and increasing the number of release vesicles via a protein kinase C‐dependent pathway. The mechanisms of Phe‐induced potentiation included interaction with both glutamate release machinery and N‐type Ca2+ channels, probably via a pre‐synaptic Gq/phospholipase C/protein kinase C pathway. Our results may provide a cellular and molecular mechanism that helps explain α1‐ARs‐mediated influence on PFC cognitive functions.

  相似文献   


18.
Gain‐of‐toxic‐function mutations in Seipin (Asparagine 88 to Serine (N88S) and Serine 90 to Leucine (S90L) mutations, both of which disrupt the N‐glycosylation) cause autosomal dominant motor neuron diseases. However, the mechanism of how these missense mutations lead to motor neuropathy is unclear. Here, we analyze the impact of disruption of N‐glycosylation of Seipin on synaptic transmission by over‐expressing mutant Seipin in cultured cortical neurons via lentiviral infection. Immunostaining shows that over‐expressed Seipin is partly colocalized with synaptic vesicle marker synaptophysin. Electrophysiological recordings reveal that the Seipin mutation significantly decreases the frequency, but not the amplitudes of miniature excitatory post‐synaptic currents and miniature inhibitory post‐synaptic currents. The amplitude of both evoked excitatory post‐synaptic currents and inhibitory post‐synaptic current is also compromised by mutant Seipin over‐expression. The readily releasable pool and vesicular release probability of synaptic vesicles are both altered in neurons over‐expressing Seipin‐N88S, whereas neither γ‐amino butyric acid (GABA) nor α‐Amino‐3‐hydroxy‐5‐methyl‐4‐ isoxazolepropionic acid (AMPA) induced whole cell currents are affected. Moreover, electron microscopy analysis reveals decreased number of morphologically docked synaptic vesicles in Seipin‐N88S‐expressing neurons. These data demonstrate that Seipin‐N88S mutation impairs synaptic neurotransmission, possibly by regulating the priming and docking of synaptic vesicles at the synapse.

  相似文献   


19.
Depression has been associated with a low‐grade chronic inflammatory state, suggesting a potential therapeutic role for anti‐inflammatory agents. Fisetin is a naturally occurring flavonoid in strawberries that has anti‐inflammatory activities, but whether fisetin has antidepressant effects is unknown. In this study, we exposed mice to spatial restraint for 2 weeks with or without treatment with fisetin. Immobility time in the forced swimming and tail suspension test after this restraint increased in the untreated group, but this increase did not occur in the fisetin group. We administered fisetin to Abelson helper integration site‐1 (Ahi1) knockout mice, which have depressive phenotypes. We found that fisetin attenuated the depressive phenotype of these Ahi1 knockout mice. We further investigated the potential mechanism of fisetin's antidepressant effects. Because TrkB is a critical signaling pathway in the mechanisms of depression, we examined whether phosphorylated TrkB was involved in the antidepressant effects of fisetin. We found that fisetin increased phosphorylated TrkB level without altering total TrkB; this increase was attenuated by K252a, a specific TrkB inhibitor. Taken together, our results demonstrated that fisetin may have therapeutic potential for treating depression and that this antidepressant effect may be mediated by the activation of the TrkB signaling pathway.

  相似文献   

20.
Growing evidence suggests that oxidative stress, as associated with spinal cord injury (SCI), may play a critical role in both neuroinflammation and neuropathic pain conditions. The production of the endogenous aldehyde acrolein, following lipid peroxidation during the inflammatory response, may contribute to peripheral sensitization and hyperreflexia following SCI via the TRPA1‐dependent mechanism. Here, we report that there are enhanced levels of acrolein and increased neuronal sensitivity to the aldehyde for at least 14 days after SCI. Concurrent with injury‐induced increases in acrolein concentration is an increased expression of TRPA1 in the lumbar (L3–L6) sensory ganglia. As proof of the potential pronociceptive role for acrolein, intrathecal injections of acrolein revealed enhanced sensitivity to both tactile and thermal stimuli for up to 10 days, supporting the compound's pro‐nociceptive functionality. Treatment of SCI animals with the acrolein scavenger hydralazine produced moderate improvement in tactile responses as well as robust changes in thermal sensitivity for up to 49 days. Taken together, these data suggest that acrolein directly modulates SCI‐associated pain behavior, making it a novel therapeutic target for preclinical and clinical SCI as an analgesic.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号