首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A study based on 14 STRs was conducted to understand intergenerational genetic changes that have occurred within the California National Primate Research Center's (CNPRC) regular specific pathogen‐free (SPF) and super‐SPF captive rhesus macaque populations relative to their conventional founders. Intergenerational genetic drift has caused age cohorts of each study population, especially within the conventional population, to become increasingly differentiated from each other and from their founders. Although there is still only minimal stratification between the conventional population and either of the two SPF populations, separate derivation of the regular and super‐SPF animals from their conventional founders has caused the two SPF populations to remain marginally different from each other. The regular SPF and, especially, the super‐SPF populations have been influenced by the effects of differential ancestry, sampling, and lost rare alleles, causing a substantial degree of genetic divergence between these subpopulations. The country of origin of founders is the principal determinant of the MHC haplotype composition of the SPF stocks at the CNPRC. Selection of SPF colony breeders bearing desired genotypes of Mamu‐A*01 or ‐B*01 has not affected the overall genetic heterogeneity of the conventional and the SPF research stocks. Because misclassifying the ancestry of research stocks can undermine experimental outcomes by excluding animals with regional‐specific genotypes or phenotypes of importance, understanding founder/descendent genetic relationships is crucial for investigating candidate genes with distinct geographic origins. Together with demographic management, population genetic assessments of SPF colonies can curtail excessive phenotypic variation among the study stocks and facilitate successful production goals. Am. J. Primatol. 72:587–599, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
3.
Pigtailed macaques (Macaca nemestrina) provide an important model for biomedical research on human disease and for studying the evolution of primate behavior. The genetic structure of captive populations of pigtailed macaques is not as well described as that of captive rhesus (M. mulatta) or cynomolgus (M. fascicularis) macaques. The Washington National Primate Research Center houses the largest captive colony of pigtailed macaques located in several different housing facilities. Based on genotypes of 18 microsatellite (short tandem repeat [STR]) loci, these pigtailed macaques are more genetically diverse than captive rhesus macaques and exhibit relatively low levels of inbreeding. Colony genetic management facilitates the maintenance of genetic variability without compromising production goals of a breeding facility. The periodic introduction of new founders from specific sources to separate housing facilities at different times influenced the colony's genetic structure over time and space markedly but did not alter its genetic diversity significantly. Changes in genetic structure over time were predominantly due to the inclusion of animals from the Yerkes National Primate Research Center in the original colony and after 2005. Strategies to equalize founder representation in the colony have maximized the representation of the founders’ genomes in the extant population. Were exchange of animals among the facilities increased, further differentiation could be avoided. The use of highly differentiated animals may confound interpretations of phenotypic differences due to the inflation of the genetic contribution to phenotypic variance of heritable traits. Am. J. Primatol. 74:1017‐1027, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
The effectiveness of abating hybridity in a rhesus breeding colony was evaluated. STR data from the 2006 to 2015 newborns were analyzed. Hybridity decreased over successive years. Birth cohorts retained high genetic variability without signs of inbreeding and differentiation. Hybridity was minimized without compromising overall genetic variability.  相似文献   

5.
Background While rates of gene flow between rhesus and longtail macaque populations near their hybrid zone in Indochina have been quantified elsewhere, this study demonstrates that the inter‐specific introgression is not limited to the Indochinese hybrid zone but is more geographically widespread. Methods Twelve rhesus and longtail macaque populations were analyzed using single nucleotide polymorphic (SNP) loci. Results There is evidence for inter‐specific admixture between Chinese rhesus and mainland longtails, with implications for genetic diversity both in the Chinese super‐SPF population at the California National Primate Research Center and in other primate facilities. Eastern Chinese rhesus appeared more highly derived than western Chinese rhesus, and allele sharing between longtails and Chinese rhesus was not random with regard to geographic distance, but no significant nuclear genetic differences between eastern and western Chinese rhesus were detected among the 245 genic SNPs assayed. Conclusion The implications of this inter‐specific admixture for the use of Chinese rhesus and mainland longtail in biomedical research should be considered.  相似文献   

6.
7.
Background  Fullbred Chinese and Indian rhesus macaques represent genetically distinct populations. The California National Primate Research Center introduced Chinese founders into its Indian-derived rhesus colony in response to the 1978 Indian embargo on exportation of animals for research and the concern that loss of genetic variation in the closed colony would hamper research efforts. The resulting hybrid rhesus now number well over a thousand animals and represent a growing proportion of the animals in the colony.
Methods  We characterized the population genetic structure of the hybrid colony and compared it with that of their pure Indian and Chinese progenitors.
Results  The hybrid population contains higher genetic diversity and linkage disequilibrium than their full Indian progenitors and represents a resource with unique research applications.
Conclusions  The genetic diversity of the hybrids indicates that the strategy to introduce novel genes into the colony by hybridizing Chinese founders and their hybrid offspring with Indian-derived animals was successful.  相似文献   

8.
9.
Abstract The National Primate Research Centers (NPRCs) established Working Groups (WGs) for developing resources and mechanisms to facilitate collaborations among non-human primate (NHP) researchers. Here we report the progress of the Genome Banking and the Genetics and Genomics WGs in developing resources to advance the exchange, analysis and comparison of NHP genetic and genomic data across the NPRCs.
The Genome Banking WG has established a National NHP DNA bank comprising 1250 DNA samples from unrelated animals and family trios from the 10 NHP species housed within the NPRC system. The Genetics and Genomics WG is developing SNP arrays that will provide a uniform, highly informative, efficient and low-cost method for rhesus and long-tailed macaque genotyping across the eight NPRCs. This WG is also establishing a Biomedical Informatics Research Network-based portal for shared bioinformatics resources including vital statistics, genotype and population data and information on the National NHP DNA bank.  相似文献   

10.
Insights into the genetic characteristics of a species provide important information for wildlife conservation programs. Here, we used the OvineSNP50 BeadChip developed for domestic sheep to examine population structure and evaluate genetic diversity of snow sheep (Ovis nivicola) inhabiting Verkhoyansk Range and Momsky Ridge. A total of 1,121 polymorphic SNPs were used to test 80 specimens representing five populations, including four populations of the Verkhoyansk Mountain chain: Kharaulakh Ridge–Tiksi Bay (TIK,= 22), Orulgan Ridge (ORU,= 22), the central part of Verkhoyansk Range (VER,= 15), Suntar‐Khayata Ridge (SKH,= 13), and Momsky Ridge (MOM,= 8). We showed that the studied populations were genetically structured according to a geographic pattern. Pairwise FST values ranged from 0.044 to 0.205. Admixture analysis identified = 2 as the most likely number of ancestral populations. A Neighbor‐Net tree showed that TIK was an isolated group related to the main network through ORU. TreeMix analysis revealed that TIK and MOM originated from two different ancestral populations and detected gene flow from MOM to ORU. This was supported by the f3 statistic, which showed that ORU is an admixed population with TIK and MOM/SKH heritage. Genetic diversity in the studied groups was increasing southward. Minimum values of observed (Ho) and expected (He) heterozygosity and allelic richness (Ar) were observed in the most northern population—TIK, and maximum values were observed in the most southern population—SKH. Thus, our results revealed clear genetic structure in the studied populations of snow sheep and showed that TIK has a different origin from MOM, SKH, and VER even though they are conventionally considered a single subspecies known as Yakut snow sheep (Ovis nivicola lydekkeri). Most likely, TIK was an isolated group during the Late Pleistocene glaciations of Verkhoyansk Range.  相似文献   

11.
One of the prime concerns at zoos and at primate breeding facilities is to maintain genetic variability. This can be accomplished by avoiding inbreeding. It is relatively easy to assess genetic variability and the level of inbreeding by using pedigree information and genetic markers. In this study we used genetic markers controlled by 6 independent polymorphic loci (GPI, PGD, CA2, MPI, DIA1, Tf) to ascertain genetic variation in two captive and one wild population of rhesus monkeys. Two other loci ADA and NP were also examined and found to be monomorphic in the three populations. F-statistics and contingency chi-square analyses indicated that there was significant genetic differentiation among the populations. We also found that the mean heterozygosities were very similar in the three populations, in spite of the diverse breeding strategies. These data are important because rhesus monkeys are frequently used for biomedical research; and the genetic markers provide useful information for genetic management of captive colonies of nonhuman primates. © 1992 Wiley-Liss, Inc.  相似文献   

12.
Some breeding facilities in the United States have crossbred Chinese and Indian rhesus macaque (Macaca mulatta) founders either purposefully or inadvertently. Genetic variation that reflects geographic origins among research subjects has the potential to influence experimental outcomes. The use of animals from different geographic regions, their hybrids, and animals of varying degrees of kinship in an experiment can obscure treatment effects under study because high interanimal genetic variance can increase phenotypic variance among the research subjects. The intent of this study, based on a broad genomic analysis of 2,808 single nucleotide polymorphisms (SNPs), is to ensure that only animals estimated to be of pure Indian or Chinese ancestry, based on both demographic and genetic information, are used as sources of infants for derivation and expansion of the California National Primate Research Center's (CNPRC) super‐Specific Pathogen Free (SSPF) rhesus macaque colony. Studies of short tandem repeats (STRs) in Indian and Chinese rhesus macaques have reported that heterozygosity of STRs is higher in Chinese rhesus macaques than in Indian rhesus macaques. The present study shows that heterozygosity of SNPs is actually higher in Indian than in Chinese rhesus macaques and that the Chinese SSPF rhesus macaque colony is far less differentiated from their founders compared to the Indian‐origin animals. The results also reveal no evidence of recent gene flow from long‐tailed and pig‐tailed macaques into the source populations of the SSPF rhesus macaques. This study indicates that many of the long‐tailed macaques held in the CNPRC are closely related individuals. Most polymorphisms shared among the captive rhesus, long‐tailed, and pig‐tailed macaques likely predate the divergence among these groups. Am. J. Primatol. 74:747‐757, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Genetic relatedness of 24 animals belonging to seven Indian cattle breeds was studied using high throughput genotyping‐by‐sequencing (GBS) markers. GBS produced 93.6 million reads with an average of about 3.9 million reads per animal. A total of 107 488 SNPs were identified in these individuals. When only one SNP per read was considered, a total of 60 261 SNPs representing independent reads were identified with an average SNP‐to‐SNP distance of 45 kb across the bovine reference genome. About 24% of the GBS‐SNP markers were more than 100 kb apart. Of these, 58 322 SNPs mapped to autosomes, 1645 to the X chromosome and 28 to the Y chromosome. The average SNP‐to‐SNP distance on the X chromosome was 91.3 kb, whereas on the Y chromosome it was 1546.4 kb. The minor allele frequency within the Indian cattle varied from 0.103 (Ongole) to 0.177 (Siri), whereas Holstein cattle had the lowest value of 0.089. This is the first application of GBS in cattle of South Asia. The baseline information generated in this study might prompt implementation of GBS in breeding of cattle belonging to this region.  相似文献   

14.
15.
Climate is one of the most important drivers of local adaptation in forest tree species. Standing levels of genetic diversity and structure within and among natural populations of forest trees are determined by the interplay between climatic heterogeneity and the balance between selection and gene flow. To investigate this interplay, single nucleotide polymorphisms (SNPs) were genotyped in 24 to 37 populations from four subalpine conifers, Abies alba Mill., Larix decidua Mill., Pinus cembra L. and Pinus mugo Turra, across their natural ranges in the Italian Alps and Apennines. Patterns of population structure were apparent using a Bayesian clustering program, STRUCTURE, which identified three to five genetic groups per species. Geographical correlates with these patterns, however, were only apparent for P. cembra. Multivariate environmental variables [i.e. principal components (PCs)] were subsequently tested for association with SNPs using a Bayesian generalized linear mixed model. The majority of the SNPs, ranging from six in L. decidua to 18 in P. mugo, were associated with PC1, corresponding to winter precipitation and seasonal minimum temperature. In A. alba, four SNPs were associated with PC2, corresponding to the seasonal minimum temperature. Functional annotation of those genes with the orthologs in Arabidopsis revealed several genes involved in abiotic stress response. This study provides a detailed assessment of population structure and its association with environment and geography in four coniferous species in the Italian mountains.  相似文献   

16.
Macrobrachium rosenbergii, the giant freshwater prawn, is an important source of high quality protein and occurs naturally in rivers as well as commercial farms in South and South‐East Asia, including Bangladesh. This study investigated the genetic variation and population structure of M. rosenbergii sampled from four rivers in Bangladesh (sample size ranged from 19 to 20), assessing sequence variation, both in the mitochondrial cytochrome oxidase subunit 1 (CO1) gene and in 106 single nucleotide polymorphisms (SNPs) sampled randomly from the genome with double digest RAD sequencing (ddRADseq). The mitochondrial variation presented a shallow genealogy with high haplotype diversity (= 0.95), reflecting an expansion in population size for the last ~82 kyr. Based on the CO1 variation the current effective population size (Ne) was 9.7 × 106 (CI: 1.33 × 106 – 35.84 × 106) individuals. A significant population differentiation was observed with the mitochondrial CO1 sequence variation and based on the ddRADseq variation, which could be traced to the divergence of the population in the Naf River in the South‐East border with Myanmar from the other populations. A differentiation in mtDNA haplotype frequencies was also observed between the Biskhali River and the Karnaphuli Rivers in eastern Bangladesh. This study demonstrated the use of high‐throughput genotyping based on the ddRADseq method to reveal population structure at a small geographical scale for an important freshwater prawn. The information from this study can be utilized for management and conservation of this species in Bangladesh.  相似文献   

17.
Maritime pine provides essential ecosystem services in the south‐western Mediterranean basin, where it covers around 4 million ha. Its scattered distribution over a range of environmental conditions makes it an ideal forest tree species for studies of local adaptation and evolutionary responses to climatic change. Highly multiplexed single nucleotide polymorphism (SNP) genotyping arrays are increasingly used to study genetic variation in living organisms and for practical applications in plant and animal breeding and genetic resource conservation. We developed a 9k Illumina Infinium SNP array and genotyped maritime pine trees from (i) a three‐generation inbred (F2) pedigree, (ii) the French breeding population and (iii) natural populations from Portugal and the French Atlantic coast. A large proportion of the exploitable SNPs (2052/8410, i.e. 24.4%) segregated in the mapping population and could be mapped, providing the densest ever gene‐based linkage map for this species. Based on 5016 SNPs, natural and breeding populations from the French gene pool exhibited similar level of genetic diversity. Population genetics and structure analyses based on 3981 SNP markers common to the Portuguese and French gene pools revealed high levels of differentiation, leading to the identification of a set of highly differentiated SNPs that could be used for seed provenance certification. Finally, we discuss how the validated SNPs could facilitate the identification of ecologically and economically relevant genes in this species, improving our understanding of the demography and selective forces shaping its natural genetic diversity, and providing support for new breeding strategies.  相似文献   

18.
The California National Primate Research Center (CNPRC) houses more than 1,000 rhesus macaques (Macaca mulatta) of mixed Chinese-Indian ancestry. Most of these animals are kept in outdoor field cages, the colony's long term breeding resource. Since 2001, hybrids comprised between 4 and 49% of the field cage populations, but in most cases have represented a maximum of 10% of those populations. The increasing prevalence of hybrids is partly due to management efforts to distribute genetic diversity effectively and minimize genetic subdivisions. However, other factors may also contribute to the spread of hybrids within the colony, most notably variance in socio-sexual behaviors and physical attributes. It is known that hybrids of some species exhibit heterosis, such as early maturation, that can enhance reproductive success, and anecdotal observations of mixed groups of hybrid, Indian and Chinese animals at the CNPRC suggest that hybrids are more sexually active. To determine whether hybrids experienced a reproductive advantage, a study was conducted using birth records of 5,611 offspring born in the CNPRC colony between 2003 and 2009. We found that while the degree of Chinese ancestry (DCA) appeared to influence the maturational schedule of both males and females (maturation was inversely related to proportion of Chinese ancestry), DCA had no independent effect on either male or female RS or rank. Therefore, we have found no evidence that a hybrid phenotype confers an absolute reproductive advantage in our colony.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号