首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Hematopoietic homeostasis depends on the maintenance of hematopoietic stem cells (HSCs), which are regulated within a specialized bone marrow (BM) niche. When HSC sense external stimuli, their adhesion status may be critical for determining HSC cell fate. The cell surface molecule, integrin αvβ3, is activated through HSC adhesion to extracellular matrix and niche cells. Integrin β3 signaling maintains HSCs within the niche. Here, we showed the synergistic negative regulation of the pro‐inflammatory cytokine interferon‐γ (IFNγ) and β3 integrin signaling in murine HSC function by a novel definitive phenotyping of HSCs. Integrin αvβ3 suppressed HSC function in the presence of IFNγ and impaired integrin β3 signaling mitigated IFNγ‐dependent negative action on HSCs. During IFNγ stimulation, integrin β3 signaling enhanced STAT1‐mediated gene expression via serine phosphorylation. These findings show that integrin β3 signaling intensifies the suppressive effect of IFNγ on HSCs, which indicates that cell adhesion via integrin αvβ3 within the BM niche acts as a context‐dependent signal modulator to regulate the HSC function under both steady‐state and inflammatory conditions.  相似文献   

2.
3.
Cardiac performance decreases with age, which is a major risk factor for cardiovascular disease and mortality in the aging human population, but the molecular mechanisms underlying cardiac aging are still poorly understood. Investigating the role of integrin‐linked kinase (ilk) and β1‐integrin (myospheroid, mys) in Drosophila, which colocalize near cardiomyocyte contacts and Z‐bands, we find that reduced ilk or mys function prevents the typical changes of cardiac aging seen in wildtype, such as arrhythmias. In particular, the characteristic increase in cardiac arrhythmias with age is prevented in ilk and mys heterozygous flies with nearly identical genetic background, and they live longer, in line with previous findings in Caenorhabditis elegans for ilk and in Drosophila for mys. Consistent with these findings, we observed elevated β1‐integrin protein levels in old compared with young wild‐type flies, and cardiac‐specific overexpression of mys in young flies causes aging‐like heart dysfunction. Moreover, moderate cardiac‐specific knockdown of integrin‐linked kinase (ILK)/integrin pathway‐associated genes also prevented the decline in cardiac performance with age. In contrast, strong cardiac knockdown of ilk or ILK‐associated genes can severely compromise cardiac integrity, including cardiomyocyte adhesion and overall heart function. These data suggest that ilk/mys function is necessary for establishing and maintaining normal heart structure and function, and appropriate fine‐tuning of this pathway can retard the age‐dependent decline in cardiac performance and extend lifespan. Thus, ILK/integrin‐associated signaling emerges as an important and conserved genetic mechanism in longevity, and as a new means to improve age‐dependent cardiac performance, in addition to its vital role in maintaining cardiac integrity.  相似文献   

4.
5.
Nicotinic acetylcholine receptors (nAChR) of the α6β2* subtype (where *indicates the possible presence of additional subunits) are prominently expressed on dopaminergic neurons. Because of this, their role in tobacco use and nicotine dependence has received much attention. Previous studies have demonstrated that α6β2*‐nAChR are down‐regulated following chronic nicotine exposure (unlike other subtypes that have been investigated – most prominently α4β2* nAChR). This study examines, for the first time, effects across a comprehensive chronic nicotine dose range. Chronic nicotine dose–responses and quantitative ligand‐binding autoradiography were used to define nicotine sensitivity of changes in α4β2*‐nAChR and α6β2*‐nAChR expression. α6β2*‐nAChR down‐regulation by chronic nicotine exposure in dopaminergic and optic‐tract nuclei was ≈three‐fold more sensitive than up‐regulation of α4β2*‐nAChR. In contrast, nAChR‐mediated [3H]‐dopamine release from dopamine‐terminal region synaptosomal preparations changed only in response to chronic treatment with high nicotine doses, whereas dopaminergic parameters (transporter expression and activity, dopamine receptor expression) were largely unchanged. Functional measures in olfactory tubercle preparations were made for the first time; both nAChR expression levels and nAChR‐mediated functional measures changed differently between striatum and olfactory tubercles. These results show that functional changes measured using synaptosomal [3H]‐DA release are primarily owing to changes in nAChR, rather than in dopaminergic, function.

  相似文献   


6.
By introducing an α3 gene-containing plasmid into a human T cell line Jurkat, we prepared the T cells, which express a high level of the α3β1 integrin, to assess the role of laminin 5 in the skin immune system. The α3β1-expressing T cells adhered to laminin 5 and exhibited spreading. These adhered T cells showed a significant tyrosine phosphorylation of intracellular proteins including p59fynupon T-cell receptor (TCR) stimulation. Six hours after cross-linking TCR, these cells on laminin 5 secreted a three times higher level of IL-2 than those on a BSA-coated plate. Twenty hours after the stimulation, 48% of the α3β1-expressing T cells on laminin 5 caused apoptosis. The protein level of cyclin D3 and E decreased, while that of p53 increased in these T cells. These data suggest that laminin 5 may play at least two regulatory roles for T cell functions: augmentation of IL-2 production by antigen-stimulated T cells and induction of apoptosis in these T cells.  相似文献   

7.
Functions of small GTPases in integrin expression were investigated when the interaction of nonadherent human colon carcinoma 201 cells with the extracellular matrix (ECM) was examined. By transfection of the constitutively active form of a small GTPase Rac1, Rac V12, adhesion of cells to the ECM increased with concomitant cell spreading and formation of membrane ruffles. Activated Cdc42 and Cdc42 V12, but not wild-type Rac1, Cdc42, or RhoA, also induced the adhesion and spreading of Colo201 cells. This adhesion is integrin β4 dependent since an antibody for integrin β4 inhibited the RacV12-dependent cell adhesion and numbers of adhesive cells on laminin-coated plates exceeded those on collagen- and fibronectin-coated plates. By immunofluorescence, in addition to clustering of integrin molecules, expression of integrin α6β4 on the cell surface of Rac V12- and Cdc42 V12-expressing cells was selectively up-regulated without an increase in biosynthesis of α6β4 integrin. Treatment of Rac V12-expressing cells with wortmannin or LY294002, specific inhibitors of phosphoinositide 3-OH kinase, decreased the up-regulated α6β4 and cell adhesion. In light of this evidence, we propose that the regulation of integrin α6β4 expression induced by Rac1 and Cdc42 may play an important role in cell adhesion and tumorigenesis of colon carcinoma cells.  相似文献   

8.
We report here an analysis of the expression and function of the α chain of human VLA-4 in stable mouse L cell transfectants and the requirement for the β chain in these processes. L cells were transfected with human α4 cDNA or α4 and human β1 cDNA. Unexpectedly, human α4 cDNA, when transfected alone, could induce de novo surface expression of host β7 and increased expression of host β1. Induction of mouse β7 and β1 surface expression was not due to de novo gene activation, but instead represented α4/β intracellular subunit association and transport to the cell surface. Transfection with human β1 prevented surface expression of mouse β integrins. Whereas human α4 and human β1 subunits associated very tightly in anti-α4 immunoprecipitates, human α4 and mouse β subunits were only partially associated. Furthermore, binding of human/mouse chimeric receptors to recombinant VCAM, a major ligand for α4β7 and α4β1, was very poor, whereas human α4/human β1 receptors bound strongly to VCAM. One α4 transfectant, which exhibited a tight human α4/mouse β1 association, could be induced, but only after PMA activation, to bind strongly to VCAM. These results indicate that α4 subunits have specific affinity for β7 and β1 integrins and require β subunits for surface expression as well as high affinity ligand binding activity. Our results indicate that a tight association between the α4 and β subunit appears to be critical for ligand binding, consistent with a direct as well as regulatory role for the β subunit in ligand binding. Furthermore, these studies demonstrate that expression of foreign recombinant proteins can alter host cell protein expression resulting in de novo surface protein expression. © 1996 Wiley-Liss, Inc.  相似文献   

9.
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Simulated enzymic debranching of a β-limit dextrin model, prepared from a computed construct made by random extension and branching, and given the CCL value of w-maize amylopectin (and equal amounts of external chains with ECL values of 2 and 3) has been related to experimental chromatograms of the debranched β-limit dextrin of the amylopectin. The profile was similar to those from gel chromatograms and IEC-PAD chromatography.The equivalent lengths in glucosyl units of grid-links (g-links) of internal and external chains in constructs were calculated from the ICL and ECL values of amylopectin and models produced from the constructs with the appropriate lengths for internal and external chains. These derived models were subjected to simulated hydrolysis by Pseudomonas stutzeri amylase and the products compared with those of the experimental distribution from w-maize amylopectin. With the model the amounts of maltotetraose and maltodextrins released were similar to the experimental values but the distribution of branched maltodextrins was quite different. Unlike w-maize amylopectin – a polymer with the cluster structure – which has given a profile of molecular sizes of maltodextrins with low amounts of single and small numbers of internal chains and with a peak at a MW of about 14,000 (13 chains), in the model the proportion of maltodextrin with one internal chain was high and as d.p. increased the amounts decreased exponentially. This would be expected if the distribution of internal chains in the core was random. It is suggested that in the core of a model prepared from a construct made with alternating probabilities of extension – one in which this probability is high relative to branching, and a second in which it is low – may give clusters of branched maltodextrins with short internal chains which are joined by longer chains; more closely approximating the distribution of internal chains of different lengths in amylopectin.An arrangement for amylopectin molecules in the starch granule has been proposed. In this, they have a wafer-like, discoidal shape, composed of the amorphous zone overlain with the double helical, crystalline region. The flat macromolecules are concentrically layered with the former on the inside and the latter oriented to the outside of the granule.  相似文献   

11.
The integrin α4β1 is involved in mediating exfiltration of leukocytes from the vasculature. It interacts with a number of proteins up-regulated during the inflammatory response including VCAM-1 and the CS-1 alternatively spliced region of fibronectin. In addition it binds the multifunctional protein osteopontin (OPN), which can act as both a cytokine and an extracellular matrix molecule. Here we map the region of human OPN that supports cell adhesion via α4β1 using GST fusion proteins. We show that α4β1 expressed in J6 cells interacts with intact OPN when the integrin is in a high activation state, and by deletion mapping that the α4β1 binding region in OPN lies between amino acid residues 125 and 168 (aa125–168). This region contains the central RGD motif of OPN, which also interacts with integrins αvβ3, αvβ5, αvβ1, α8β1, and α5β1. Mutating the RGD motif to RAD had no effect on the interaction with α4β1. To define the binding site the region incorporating aa125–168 was divided into 5 overlapping peptides expressed as GST fusion proteins. Two peptides supported adhesion via α4β1, aa132–146, and aa153–168; of these only a synthetic peptide, SVVYGLR (aa162–168), derived from aa153–168 was able to inhibit α4β1 binding to CS-1. These data identify the motif SVVYGLR as a novel peptide inhibitor of α4β1, and the primary α4β1 binding site within OPN.  相似文献   

12.
Schwann cells (SCs) co-cultured with sensory neurons require ascorbate supplementation for basal lamina assembly and differentiation into myelinating cells. The ascorbate requirement can be bypased by adding a purifed basal lamina component, laminin, to SC/neuron cocultures. We have examined the role of laminin receptors, Namely, the β1 subfamily of integrins, in the process of myelination. We demonstrate by immunostaining or immunoprecipitation that undifferentiated SCs in contact with axons express large amounts of the β1 subunit in association with the α1 or α6 subunit. In co-cultures of myelinating SCs, α1β1 is no longer present, α6β1 is still present but at reduced levels, and α6β4 is expressed at much higher levels than in co-cultures of undifferentiated SCs. Immunogold labelling at the electron microscope level suggested that β1 integrins are randomly distributed on undifferentiated SCs, become localized to the SC surface contacting basal lamina in differentiating SCs before the onset of myelination, and are not detected on myelinating SCs. Fab fragments of β1 function-blocking antibody block both attachment of isolated SCs to laminin and formation of myelin sheaths by SCs co-cultured with neurons in ascorbate-supplemented medium. SCs unable to myelinate in the presence of the anti-β1 antibody assemble patchy basal lamina that is only loosely attached to the cell surface and in some cases appears to be detaching from the membrane. In contrast, an α1β1 function-blocking antibody only partially blocks attachment of isolated SCs to laminin but has no inhibitory effect on SC myelination. These results are consistent with the hypothesis that a member of the β1 subfamily of integrins other than α1β1 binds laminin present in basal lamina to the SC surface and transduces signals that are critical for initiation of SC differentiation into a myelinating cell. 1994 John Wiley & Sons, Inc.  相似文献   

13.
Gamma‐aminobutyric acid type A receptors (GABAARs) are the most important inhibitory chloride ion channels in the central nervous system and are major targets for a wide variety of drugs. The subunit compositions of GABAARs determine their function and pharmacological profile. GABAARs are heteropentamers of subunits, and (α1)2(β3)2(γ2L)1 is a common subtype. Biochemical and biophysical studies of GABAARs require larger quantities of receptors of defined subunit composition than are currently available. We previously reported high‐level production of active human α1β3 GABAAR using tetracycline‐inducible stable HEK293 cells. Here we extend the strategy to receptors containing three different subunits. We constructed a stable tetracycline‐inducible HEK293‐TetR cell line expressing human (N)–FLAG–α1β3γ2L–(C)–(GGS)3GK–1D4 GABAAR. These cells achieved expression levels of 70–90 pmol [3H]muscimol binding sites/15‐cm plate at a specific activity of 15–30 pmol/mg of membrane protein. Incorporation of the γ2 subunit was confirmed by the ratio of [3H]flunitrazepam to [3H]muscimol binding sites and sensitivity of GABA‐induced currents to benzodiazepines and zinc. The α1β3γ2L GABAARs were solubilized in dodecyl‐d ‐maltoside, purified by anti‐FLAG affinity chromatography and reconstituted in CHAPS/asolectin at an overall yield of ~30%. Typical purifications yielded 1.0–1.5 nmoles of [3H]muscimol binding sites/60 plates. Receptors with similar properties could be purified by 1D4 affinity chromatography with lower overall yield. The composition of the purified, reconstituted receptors was confirmed by ligand binding, Western blot, and proteomics. Allosteric interactions between etomidate and [3H]muscimol binding were maintained in the purified state.  相似文献   

14.
15.
16.
The α2δ subunit of voltage‐sensitive calcium channels (VSCCs) is the molecular target of pregabalin and gabapentin, two drugs marked for the treatment of focal epilepsy, neuropathic pain, and anxiety disorders. Expression of the α2δ subunit is up‐regulated in the dorsal horns of the spinal cord in models of neuropathic pain, suggesting that plastic changes in the α2δ subunit are associated with pathological states. Here, we examined the expression of the α2δ‐1 subunit in the amygdala, hippocampus, and frontal cortex in the trimethyltiazoline (TMT) mouse model of innate anxiety. TMT is a volatile molecule present in the feces of the rodent predator, red fox. Mice that show a high defensive behavior during TMT exposure developed anxiety‐like behavior in the following 72 h, as shown by the light–dark test. Anxiety was associated with an increased expression of the α2δ‐1 subunit of VSCCs in the amygdaloid complex at all times following TMT exposure (4, 24, and 72 h). No changes in the α2δ‐1 protein levels were seen in the hippocampus and frontal cortex of mice exposed to TMT. Pregabalin (30 mg/kg, i.p.) reduced anxiety‐like behavior in TMT‐exposed mice, but not in control mice. These data offer the first demonstration that the α2δ‐1 subunit of VSCCs undergoes plastic changes in a model of innate anxiety, and supports the use of pregabalin as a disease‐dependent drug in the treatment of anxiety disorders.  相似文献   

17.
Troxerutin, a natural flavonoid guards against oxidative stress and apoptosis with a high capability of passing through the blood‐brain barrier. Our aim was to investigate the role of troxerutin in experimentally induced retinal neurodegeneration by modulating the interferon‐gamma (IFNγ)‐extracellular signal‐regulated kinases 1/2 (ERK1/2)‐CCAAT enhancer‐binding protein β (C/EBP‐β) signaling pathway. Three groups of rats (10 each group) were included. Group I (control group), group II (rotenone treated group): the rats were injected subcutaneously with a single rotenone dosage of 3 mg/kg repeated every 48 hours for 60 days to trigger retinal neurodegeneration. Group III (troxerutin‐treated group): rats received troxerutin (150 mg/kg/day) by oral gavage 1 hour before rotenone administration. A real‐time polymerase chain reaction technique was applied to measure messenger RNA (mRNA) levels of retinal C/EBP‐β. Enzyme‐linked immunosorbent assay technique was utilized to assay tumor necrosis factor‐α (TNF‐α), IFNγ, and ERK1/2 levels. Finally, reactive oxygen species (ROS), as well as carbonylated protein (CP) levels, were assessed spectrophotometrically. Improved retinal neurodegeneration by downregulation of C/EBP‐β mRNA gene expression, also caused a significant reduction of TNF‐α, IFNγ, ERK1/2 as well as ROS and CP levels compared with the diseased group. These findings could hold promise for the usage of troxerutin as a protective agent against rotenone‐induced retinal neurodegeneration.  相似文献   

18.
In anterior pituitaries from male rats, it appeared that 5α-androstane-3β, 17β-diol was quickly metabolized into 5α-androstane-3β,6α-17β-triol and 5α-androstane-3β,7α, 17β-triol by action of 6α- and 7α-hydroxylases. Hydroxysteroid hydroxylases were located in endoplasmic reticulum and were dependent on NADPH+. Their optimum pH was 8.0, optima temperature, 37°C, and their apparent Km was 2.7 μM. Hydroxylative reactions were not reversible and not modified by gonadectomy. Hydroxylation seemed an efficient control of the pituitary level of 5α-andros-tane-3β, 17β-diol.  相似文献   

19.
The oncogenic SHC proteins are signaling substrates for most receptor and cytoplasmic tyrosine kinases (TKs) and have been implicated in cellular growth, transformation, and differentiation. In tumor cells overexpressing TKs, the levels of tyrosine phosphorylated SHC are chronically elevated. The significance of amplified SHC signaling in breast tumorigenesis and metastasis remains unknown. Here we demonstrate that seven- to ninefold overexpression of SHC significantly altered interactions of cells with fibronectin (FN). Specifically, in human breast cancer cells overexpressing SHC (MCF-7/SHC) the association of SHC with α5β1 integrin (FN receptor) was increased, spreading on FN was accelerated, and basal growth on FN was reduced. These effects coincided with an early decline of adhesion-dependent MAP kinase activity. Basal motility of MCF-7/SHC cells on FN was inhibited relative to that in several cell lines with normal SHC levels. However, when EGF or IGF-I was used as the chemoattractant, the locomotion of MCF-7/SHC cells was greatly (approx fivefold) stimulated, while it was only minimally altered in the control cells. These data suggest that SHC is a mediator of the dynamic regulation of cell adhesion and motility on FN in breast cancer cells.  相似文献   

20.
Metallo‐β‐lactamases (MBLs) are some of the best known β‐lactamases produced by common Gram‐positive and Gram‐negative pathogens and are crucial factors in the rise of bacterial resistance against β‐lactam antibiotics. Although many types of β‐lactamase inhibitors have been successfully developed and used in clinical settings, no MBL inhibitors have been identified to date. Nitrocefin, checkerboard and time‐kill assays were used to examine the enzyme behaviour in vitro. Molecular docking calculation, molecular dynamics simulation, calculation of the binding free energy and ligand‐residue interaction decomposition were used for mechanistic research. The behaviour of the enzymes in vivo was investigated by a mouse infection experiment. We showed that theaflavin‐3,3´‐digallate (TFDG), a natural compound lacking antibacterial activities, can inhibit the hydrolysis of MBLs. In the checkerboard and time‐kill assays, we observed a synergistic effect of TFDG with β‐lactam antibiotics against methicillin‐resistant Staphylococcus aureus BAA1717. Molecular dynamics simulations were used to identify the mechanism of the inhibition of MBLs by TFDG, and we observed that the hydrolysis activity of the MBLs was restricted by the binding of TFDG to Gln242 and Ser369. Furthermore, the combination of TFDG with β‐lactam antibiotics showed effective protection in a mouse Staphylococcus aureus pneumonia model. These findings suggest that TFDG can effectively inhibit the hydrolysis activity of MBLs and enhance the antibacterial activity of β‐lactam antibiotics against pathogens in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号