首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic mutations in leucine‐rich repeat kinase 2 (LRRK2) have been linked to autosomal dominant Parkinson's disease. The most prevalent mutation, G2019S, results in enhanced LRRK2 kinase activity that potentially contributes to the etiology of Parkinson's disease. Consequently, disease progression is potentially mediated by poorly characterized phosphorylation‐dependent LRRK2 substrate pathways. To address this gap in knowledge, we transduced SH‐SY5Y neuroblastoma cells with LRRK2 G2019S via adenovirus, then determined quantitative changes in the phosphoproteome upon LRRK2 kinase inhibition (LRRK2‐IN‐1 treatment) using stable isotope labeling of amino acids in c ulture combined with phosphopeptide enrichment and LC‐MS/MS analysis. We identified 776 phosphorylation sites that were increased or decreased at least 50% in response to LRRK2‐IN‐1 treatment, including sites on proteins previously known to associate with LRRK2. Bioinformatic analysis of those phosphoproteins suggested a potential role for LRRK2 kinase activity in regulating pro‐inflammatory responses and neurite morphology, among other pathways. In follow‐up experiments, LRRK2‐IN‐1 inhibited lipopolysaccharide‐induced tumor necrosis factor alpha (TNFα) and C‐X‐C motif chemokine 10 (CXCL10) levels in astrocytes and also enhanced multiple neurite characteristics in primary neuronal cultures. However, LRRK2‐IN‐1 had almost identical effects in primary glial and neuronal cultures from LRRK2 knockout mice. These data suggest LRRK2‐IN‐1 may inhibit pathways of perceived LRRK2 pathophysiological function independently of LRRK2 highlighting the need to use multiple pharmacological tools and genetic approaches in studies determining LRRK2 function.

  相似文献   


2.
Fingolimod (FTY720) is used as an immunosuppressant for multiple sclerosis. Numerous studies indicated its neuroprotective effects in stroke. However, the mechanism remains to be elucidated. This study was intended to investigate the mechanisms of phosphorylated FTY720 (pFTY720), which was the principle active molecule in regulating astrocyte‐mediated inflammatory responses induced by oxygen‐glucose deprivation (OGD). Results demonstrated that pFTY720 could protect astrocytes against OGD‐induced injury and inflammatory responses. It significantly decreased pro‐inflammatory cytokines, including high mobility group box 1 (HMGB1) and tumour necrosis factor‐α (TNF‐α). Further, studies displayed that pFTY720 could prevent up‐regulation of Toll‐like receptor 2 (TLR2), phosphorylation of phosphoinositide 3‐kinase (PI3K) and nuclear translocation of nuclear factor kappa B (NFκB) p65 subunit caused by OGD. Sphingosine‐1‐phosphate receptor 3 (S1PR3) knockdown could reverse the above change. Moreover, administration of TLR2/4 blocker abolished the protective effects of pFTY720. Taken together, this study reveals that pFTY720 depends on S1PR3 to protect astrocytes against OGD‐induced neuroinflammation, due to inhibiting TLR2/4‐PI3K‐NFκB signalling pathway.  相似文献   

3.
4.
During human immunodeficiency virus (HIV)‐1 infection, perturbations in neuron–glia interactions may culminate in neuronal damage. Recently, purinergic receptors have been implicated in the promotion of virus‐induced neurotoxicity and supporting the viral life cycle at multiple stages. The astrocytes robustly express purinergic receptors. We therefore sought to examine if P2X7R, a P2X receptor subtype, can mediate HIV‐1 Tat‐induced neuronal apoptosis. Tat augmented the expression of P2X7R in astrocytes. Our data reveal the involvement of P2X7R in Tat‐mediated release of monocyte chemoattractant protein (MCP‐1) /chemokine (C‐C motif) ligand 2 (CCL2) from the astrocytes. P2X7R antagonists, such as the oxidized ATP, A438079, brilliant blue G, and broad spectrum P2 receptor antagonist suramin, attenuated Tat‐induced CCL2 release in a calcium‐ and extracellular signal‐regulated kinase (ERK)1/2‐dependent manner. Calcium chelators, (1,2‐bis(o‐aminophenoxy) ethane‐N,N,N',N'‐tetraacetic acid) acetoxymethyl ester and EGTA, and ERK1/2 inhibitor U0126 abolished chemokine (C‐C motif) ligand 2 release from astrocytes. Furthermore, in human neuronal cultures, we demonstrated P2X7R involvement in Tat‐mediated neuronal death. Importantly, in the TUNEL assay, the application of P2X7R‐specific antagonists or the knockdown of P2X7R in human astrocytes reduced HIV‐Tat‐induced neuronal death significantly, underlining the critical role of P2X7R in Tat‐mediated neurotoxicity. Our study provides novel insights into astrocyte‐mediated neuropathogenesis in HIV‐1 infection and a novel target for therapeutic management of neuroAIDS.

  相似文献   


5.
In the present study, the effects of the two classical anti‐epileptic drugs, carbamazepine and valproic acid, and the non‐classical anti‐seizure drug vinpocetine were investigated on the expression of the pro‐inflammatory cytokines IL‐1β and TNF‐α in the hippocampus of rats by PCR or western blot after the administration of one or seven doses. Next, the effects of the anti‐seizure drugs were investigated on the rise in cytokine expression induced by lipopolysaccharides (LPS) inoculation in vivo. To validate our methods, the changes induced by the pro‐convulsive agents 4‐aminopyridine, pentylenetetrazole and pilocarpine were also tested. Finally, the effect of the anti‐seizure drugs on seizures and on the concomitant rise in pro‐inflammatory cytokine expression induced by 4‐aminopyridine was explored. Results show that vinpocetine and carbamazepine reduced the expression of IL‐1β and TNF‐α from basal conditions, and the increase in both pro‐inflammatory cytokines induced by LPS. In contrast, valproic acid failed to reduce both the expression of the cytokines from basal conditions and the rise in IL‐1β and TNF‐α expression induced by LPS. Tonic‐clonic seizures induced either by 4‐aminopyridine, pentylenetetrazole or pilocarpine increased the expression of IL‐1β and TNF‐α markedly. 4‐aminopyridine‐induced changes were reduced by all the tested anti‐seizure drugs, although valproic acid was less effective. We conclude that the anti‐seizure drugs, vinpocetine and carbamazepine, whose mechanisms of action involve a decrease in ion channels permeability, also reduce cerebral inflammation.

  相似文献   


6.
Proper neuronal function requires essential biological cargoes to be packaged within membranous vesicles and transported, intracellularly, through the extensive outgrowth of axonal and dendritic fibers. The precise spatiotemporal movement of these cargoes is vital for neuronal survival and, thus, is highly regulated. In this study we test how the axonal movement of a neuropeptide‐containing dense‐core vesicle (DCV ) responds to alcohol stressors. We found that ethanol induces a strong anterograde bias in vesicle movement. Low doses of ethanol stimulate the anterograde movement of neuropeptide‐DCV while high doses inhibit bi‐directional movement. This process required the presence of functional kinesin‐1 motors as reduction in kinesin prevented the ethanol‐induced stimulation of the anterograde movement of neuropeptide‐DCV . Furthermore, expression of inactive glycogen synthase kinase 3 (GSK ‐3β) also prevented ethanol‐induced stimulation of neuropeptide‐DCV movement, similar to pharmacological inhibition of GSK ‐3β with lithium. Conversely, inhibition of PI 3K/AKT signaling with wortmannin led to a partial prevention of ethanol‐stimulated transport of neuropeptide‐DCV . Taken together, we conclude that GSK ‐3β signaling mediates the stimulatory effects of ethanol. Therefore, our study provides new insight into the physiological response of the axonal movement of neuropeptide‐DCV to exogenous stressors.

Cover Image for this Issue: doi: 10.1111/jnc.14165 .
  相似文献   

7.
Acyl‐CoA‐binding protein (ACBP) is a ubiquitously expressed protein that binds intracellular acyl‐CoA esters. Several studies have suggested that ACBP acts as an acyl‐CoA pool former and regulates long‐chain fatty acids (LCFA) metabolism in peripheral tissues. In the brain, ACBP is known as Diazepam‐Binding Inhibitor, a secreted peptide acting as an allosteric modulator of the GABAA receptor. However, its role in central LCFA metabolism remains unknown. In the present study, we investigated ACBP cellular expression, ACBP regulation of LCFA intracellular metabolism, FA profile, and FA metabolism‐related gene expression using ACBP‐deficient and control mice. ACBP was mainly found in astrocytes with high expression levels in the mediobasal hypothalamus. We demonstrate that ACBP deficiency alters the central LCFA‐CoA profile and impairs unsaturated (oleate, linolenate) but not saturated (palmitate, stearate) LCFA metabolic fluxes in hypothalamic slices and astrocyte cultures. In addition, lack of ACBP differently affects the expression of genes involved in FA metabolism in cortical versus hypothalamic astrocytes. Finally, ACBP deficiency increases FA content and impairs their release in response to palmitate in hypothalamic astrocytes. Collectively, these findings reveal for the first time that central ACBP acts as a regulator of LCFA intracellular metabolism in astrocytes.

  相似文献   


8.
Expressions of vascular endothelial growth factor (VEGF) receptors in astrocytes are increased in damaged brains. To clarify the regulatory mechanisms of VEGF receptors, the effects of endothelin‐1 (ET‐1) were examined in rat cultured astrocytes. Expressions of VEGF‐R1 and ‐R2 receptor mRNA were at similar levels, whereas the mRNA expressions of VEGF‐R3 and Tie‐2, a receptor for angiopoietins, were lower. Placenta growth factor, a selective agonist of the VEGF‐R1 receptor, induced phosphorylation of focal adhesion kinase (FAK) and extracellular signal regulated kinase 1/2 (ERK1/2). Phosphorylations of FAK and ERK 1/2 were also stimulated by VEGF‐E, a selective VEGF‐R2 agonist. Increased phosphorylations of FAK and ERK1/2 by VEGF165 were reduced by selective antagonists for VEGF‐R1 and ‐R2. Treatment with ET‐1 increased VEGF‐R1 mRNA and protein levels. The effects of ET‐1 on VEGF‐R1 mRNA were mimicked by Ala1,3,11,15‐ET‐1, a selective agonist for ETB receptors, and inhibited by BQ788, an ETB antagonist. ET‐1 did not affect the mRNA levels of VEGF‐R2, ‐R3, and Tie‐2. Pre‐treatment with ET‐1 potentiated the effects of placenta growth factor on phosphorylations of FAK and ERK1/2. These findings suggest that ET‐1 induces up‐regulation of VEGF‐R1 receptors in astrocytes, and potentiates VEGF signals in damaged nerve tissues.

  相似文献   


9.
Anxiety disorders are associated with a high social burden worldwide. Recently, increasing evidence suggests that nuclear factor kappa B (NF‐κB) has significant implications for psychiatric diseases, including anxiety and depressive disorders. However, the molecular mechanisms underlying the role of NF‐κB in stress‐induced anxiety behaviors are poorly understood. In this study, we show that chronic mild stress (CMS) and glucocorticoids dramatically increased the expression of NF‐κB subunits p50 and p65, phosphorylation and acetylation of p65, and the level of nuclear p65 in vivo and in vitro , implicating activation of NF‐κB signaling in chronic stress‐induced pathological processes. Using the novelty‐suppressed feeding (NSF) and elevated‐plus maze (EPM) tests, we found that treatment with pyrrolidine dithiocarbamate (PDTC; intra‐hippocampal infusion), an inhibitor of NF‐κB, rescued the CMS‐ or glucocorticoid‐induced anxiogenic behaviors in mice. Microinjection of PDTC into the hippocampus reversed CMS‐induced up‐regulation of neuronal nitric oxide synthase (nNOS), carboxy‐terminal PDZ ligand of nNOS (CAPON), and dexamethasone‐induced ras protein 1 (Dexras1) and dendritic spine loss of dentate gyrus (DG) granule cells. Moreover, over‐expression of CAPON by infusing LV‐CAPON‐L‐GFP into the hippocampus induced nNOS‐Dexras1 interaction and anxiety‐like behaviors, and inhibition of NF‐κB by PDTC reduced the LV‐CAPON‐L‐GFP‐induced increases in nNOS‐Dexras1 complex and anxiogenic‐like effects in mice. These findings indicate that hippocampal NF‐κB mediates anxiogenic behaviors, probably via regulating the association of nNOS‐CAPON‐Dexras1, and uncover a novel approach to the treatment of anxiety disorders.

  相似文献   

10.
The cytoplasmic trafficking of docosahexaenoic acid (DHA ), a cognitively beneficial fatty acid, across the blood–brain barrier (BBB ) is governed by fatty acid‐binding protein 5 (FABP 5). Lower levels of brain DHA have been observed in Alzheimer's disease (AD ), which is associated with diminished BBB expression of FABP 5. Therefore, up‐regulating FABP 5 expression at the BBB may be a novel approach for enhancing BBB transport of DHA in AD . DHA supplementation has been shown to be beneficial in various mouse models of AD , and therefore, the aim of this study was to determine whether DHA has the potential to up‐regulate the BBB expression of FABP 5, thereby enhancing its own uptake into the brain. Treating human brain microvascular brain endothelial (hCMEC /D3) cells with the maximum tolerable concentration of DHA (12.5 μM) for 72 h resulted in a 1.4‐fold increase in FABP 5 protein expression. Associated with this was increased expression of fatty acid transport proteins 1 and 4. To study the impact of dietary DHA supplementation, 6‐ to 8‐week‐old C57BL /6 mice were fed with a control diet or a DHA ‐enriched diet for 21 days. Brain microvascular FABP 5 protein expression was up‐regulated 1.7‐fold in mice fed the DHA ‐enriched diet, and this was associated with increased brain DHA levels (1.3‐fold). Despite an increase in brain DHA levels, reduced BBB transport of 14C‐DHA was observed over a 1 min perfusion, possibly as a result of competitive binding to FABP 5 between dietary DHA and 14C‐DHA . This study has demonstrated that DHA can increase BBB expression of FABP 5, as well as fatty acid transporters, overall increasing brain DHA levels.

  相似文献   

11.
12.
An important pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid‐beta (Aβ) peptides in the brain parenchyma, leading to neuronal death and impaired learning and memory. The protease γ‐secretase is responsible for the intramembrane proteolysis of the amyloid‐β precursor protein (APP), which leads to the production of the toxic Aβ peptides. Thus, an attractive therapeutic strategy to treat AD is the modulation of the γ‐secretase activity, to reduce Aβ42 production. Because phosphorylation of proteins is a post‐translational modification known to modulate the activity of many different enzymes, we used electrospray (LC‐MS/MS) mass spectrometry to identify new phosphosites on highly purified human γ‐secretase. We identified 11 new single or double phosphosites in two well‐defined domains of Presenilin‐1 (PS1), the catalytic subunit of the γ‐secretase complex. Next, mutagenesis and biochemical approaches were used to investigate the role of each phosphosite in the maturation and activity of γ‐secretase. Together, our results suggest that the newly identified phosphorylation sites in PS1 do not modulate γ‐secretase activity and the production of the Alzheimer's Aβ peptides. Individual PS1 phosphosites shall probably not be considered therapeutic targets for reducing cerebral Aβ plaque formation in AD.

  相似文献   


13.
The parkin‐associated endothelial‐like receptor (PAELR, GPR37) is an orphan G protein‐coupled receptor that interacts with and is degraded by parkin‐mediated ubiquitination. Mutations in parkin are thought to result in PAELR accumulation and increase neuronal cell death in Parkinson's disease. In this study, we find that the protein interacting with C‐kinase (PICK1) interacts with PAELR. Specifically, the Postsynaptic density protein‐95/Discs large/ZO‐1 (PDZ) domain of PICK1 interacted with the last three residues of the c‐terminal (ct) located PDZ motif of PAELR. Pull‐down assays indicated that recombinant and native PICK1, obtained from heterologous cells and rat brain tissue, respectively, were retained by a glutathione S‐transferase fusion of ct‐PAELR. Furthermore, coimmunoprecipitation studies isolated a PAELR‐PICK1 complex from transiently transfected cells. PICK1 interacts with parkin and our data showed that PICK1 reduces PAELR expression levels in transiently transfected heterologous cells compared to a PICK1 mutant that does not interact with PAELR. Finally, PICK1 over‐expression in HEK293 cells reduced cell death induced by PAEALR over‐expression during rotenone treatment and these effects of PICK1 were attenuated during inhibition of the proteasome. These results suggest a role for PICK1 in preventing PAELR‐induced cell toxicity.

  相似文献   


14.
15.
Parkinson's disease (PD) and diabetes belong to the most common neurodegenerative and metabolic syndromes, respectively. Epidemiological links between these two frequent disorders are controversial. The neuropathological hallmarks of PD are protein aggregates composed of amyloid‐like fibrillar and serine‐129 phosphorylated (pS129) α‐synuclein (AS). To study if diet‐induced obesity could be an environmental risk factor for PD‐related α‐synucleinopathy, transgenic (TG) mice, expressing the human mutant A30P AS in brain neurons, were subjected after weaning to a lifelong high fat diet (HFD). The TG mice became obese and glucose‐intolerant, as did the wild‐type controls. Upon aging, HFD significantly accelerated the onset of the lethal locomotor phenotype. Coinciding with the premature movement phenotype and death, HFD accelerated the age of onset of brainstem α‐synucleinopathy as detected by immunostaining with antibodies against pathology‐associated pS129. Amyloid‐like neuropathology was confirmed by thioflavin S staining. Accelerated onset of neurodegeneration was indicated by Gallyas silver‐positive neuronal dystrophy as well as astrogliosis. Phosphorylation of the activation sites of the pro‐survival signaling intermediate Akt was reduced in younger TG mice after HFD. Thus, diet‐induced obesity may be an environmental risk factor for the development of α‐synucleinopathies. The molecular and cellular mechanisms remain to be further elucidated.

  相似文献   


16.
17.
The discoveries of mutations in SNCA were seminal findings that resulted in the knowledge that α‐synuclein (αS) is the major component of Parkinson's disease‐associated Lewy bodies. Since the pathologic roles of these protein inclusions and SNCA mutations are not completely established, we characterized the aggregation properties of the recently identified SNCA mutations, H50Q and G51D, to provide novel insights. The properties of recombinant H50Q, G51D, and wild‐type αS to polymerize and aggregate into amyloid were studied using (trans,trans)‐1‐bromo‐2,5‐bis‐(4‐hydroxy)styrylbenzene fluorometry, sedimentation analyses, electron microscopy, and atomic force microscopy. These studies showed that the H50Q mutation increases the rate of αS aggregation, whereas the G51D mutation has the opposite effect. However, H50Q and G51D αS could still be similarly induced to form intracellular aggregates from the exposure to exogenous amyloidogenic seeds under conditions that promote their cellular entry. Both mutant αS proteins, but especially G51D, promoted cellular toxicity under cellular stress conditions. These findings reveal that the novel pathogenic SNCA mutations, H50Q and G51D, have divergent effects on aggregation properties relative to the wild‐type protein, with G51D αS demonstrating reduced aggregation despite presenting with earlier disease onset, suggesting that these mutants promote different mechanisms of αS pathogenesis.

  相似文献   


18.
Epilepsy is a chronic brain disease affecting millions of individuals. Kainate receptors, especially kainate‐type of ionotropic glutamate receptor 2 (GluK2), play an important role in epileptogenesis. Recent data showed that GluK2 could undergo post‐translational modifications in terms of S‐nitrosylation (SNO ), and affect the signaling pathway of cell death in cerebral ischemia‐reperfusion. However, it is unclear whether S‐nitrosylation of GluK2 (SNO ‐GluK2) contributes to cell death induced by epilepsy. Here, we report that kainic acid‐induced SNO ‐GluK2 is mediated by GluK2 itself, regulated by neuronal nitric oxide synthase (nNOS ) and the level of cytoplasmic calcium in vivo and in vitro hippocampus neurons. The whole‐cell patch clamp recordings showed the influence of SNO ‐GluK2 on ion channel characterization of GluK2‐Kainate receptors. Moreover, immunohistochemistry staining results showed that inhibition of SNO ‐GluK2 by blocking nNOS or GluK2 or by reducing the level of cytoplasmic calcium‐protected hippocampal neurons from kainic acid‐induced injury. Finally, immunoprecipitation and western blotting data revealed the involvement of assembly of a GluK2‐PSD 95‐nNOS signaling complex in epilepsy. Taken together, our results showed that the SNO ‐GluK2 plays an important role in neuronal injury of epileptic rats by forming GluK2‐PSD 95‐nNOS signaling module in a cytoplasmic calcium‐dependent way, suggesting a potential therapeutic target site for epilepsy.

  相似文献   

19.
Glutamate transport is a critical process in the brain that maintains low extracellular levels of glutamate to allow for efficient neurotransmission and prevent excitotoxicity. Loss of glutamate transport function is implicated in epilepsy, traumatic brain injury, and amyotrophic lateral sclerosis. It remains unclear whether or not glutamate transport can be modulated in these disease conditions to improve outcome. Here, we show that sirtuin (SIRT)4, a mitochondrial sirtuin, is up‐regulated in response to treatment with the potent excitotoxin kainic acid. Loss of SIRT4 leads to a more severe reaction to kainic acid and decreased glutamate transporter expression and function in the brain. Together, these results indicate a critical and novel stress response role for SIRT4 in promoting proper glutamate transport capacity and protecting against excitotoxicity.

  相似文献   


20.
Parkinson's disease is the second most common neurodegenerative disease and its pathogenesis is closely associated with oxidative stress. Deposition of aggregated α‐synuclein (α‐Syn) occurs in familial and sporadic forms of Parkinson's disease. Here, we studied the effect of oligomeric α‐Syn on one of the major markers of oxidative stress, lipid peroxidation, in primary co‐cultures of neurons and astrocytes. We found that oligomeric but not monomeric α‐Syn significantly increases the rate of production of reactive oxygen species, subsequently inducing lipid peroxidation in both neurons and astrocytes. Pre‐incubation of cells with isotope‐reinforced polyunsaturated fatty acids (D‐PUFAs) completely prevented the effect of oligomeric α‐Syn on lipid peroxidation. Inhibition of lipid peroxidation with D‐PUFAs further protected cells from cell death induced by oligomeric α‐Syn. Thus, lipid peroxidation induced by misfolding of α‐Syn may play an important role in the cellular mechanism of neuronal cell loss in Parkinson's disease.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号