首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Binge drinking is a common form of alcohol abuse that involves repeated rounds of intoxication followed by withdrawal. The episodic effects of binge drinking and withdrawal on brain resident cells are thought to contribute to neural remodeling and neurological damage. However, the molecular mechanisms for these neurodegenerative effects are not understood. Ethanol (EtOH) regulates the metabolism of ceramide, a highly bioactive lipid that is enriched in brain. We used a mouse model of binge drinking to determine the effects of EtOH intoxication and withdrawal on brain ceramide metabolism. Intoxication and acute alcohol withdrawal were each associated with distinct changes in ceramide regulatory genes and metabolic products. EtOH intoxication was accompanied by decreased concentrations of multiple ceramides, coincident with reductions in the expression of enzymes involved in the production of ceramides, and increased expression of ceramide‐degrading enzymes. EtOH withdrawal was associated with specific increases in ceramide C16:0, C18:0, and C20:0 and increased expression of enzymes involved with ceramide production. These data suggest that EtOH intoxication may evoke a ceramide phenotype that is neuroprotective, whereas EtOH withdrawal results in a metabolic shift that increases the production of potentially toxic ceramide species.

  相似文献   


2.
A major cause of alcohol toxicity is the production of reactive oxygen species generated during ethanol metabolism. The aim of this study was to compare the effect of binge drinking‐like alcohol exposure on a panel of genes implicated in oxidative mechanisms in adolescent and adult mice. In adolescent animals, alcohol decreased the expression of genes involved in the repair and protection of oxidative DNA damage such as atr, gpx7, or nudt15 and increased the expression of proapoptotic genes such as casp3. In contrast, in the adult brain, genes activated by alcohol were mainly associated with protective mechanisms that prevent cells from oxidative damage. Whatever the age, iterative binge‐like episodes provoked the same deleterious effects as those observed after a single binge episode. In adolescent mice, multiple binge ethanol exposure substantially reduced neurogenesis in the dentate gyrus and impaired short‐term memory in the novel object and passive avoidance tests. Taken together, our results indicate that alcohol causes deleterious effects in the adolescent brain which are distinct from those observed in adults. These data contribute to explain the greater sensitivity of the adolescent brain to alcohol toxicity.

  相似文献   


3.
Depression is one of the most debilitating neuropsychiatric disorders. Most of the current antidepressants have long remission time and low recovery rate. This study explores the impact of ketamine on neuronal and astroglial metabolic activity in prefrontal cortex in a social defeat (SD) model of depression. C57BL/6 mice were subjected to a social defeat paradigm for 5 min a day for 10 consecutive days. Ketamine (10 mg/kg, intraperitoneal) was administered to mice for two consecutive days following the last defeat stress. Mice were infused with [1,6‐13C2]glucose or [2‐13C]acetate to assess neuronal and astroglial metabolic activity, respectively, together with proton‐observed carbon‐edited nuclear magnetic resonance spectroscopy in prefrontal cortex tissue extract. The 13C labeling of amino acids from glucose and acetate was decreased in SD mice. Ketamine treatment in SD mice restored sucrose preference, social interaction and immobility time to control values. Acute subanesthetic ketamine restored the 13C labeling of brain amino acids from glucose as well as acetate in SD mice to the respective control values, suggesting that rates of neuronal and astroglial tricarboxylic acid (TCA) cycle and neurotransmitter cycling were re‐established to normal levels. The finding of improved energy metabolism in SD mice suggests that fast anti‐depressant action of ketamine is linked with improved neurotransmitter cycling.

  相似文献   

4.
《Journal of neurochemistry》2019,149(5):559-561
We are very sad that the ISN lost its President Kazuhiro Ikenaka, Professor and Chairman at National Institute for Physiological Sciences (NIPS), Director of Okazaki Institute of Integrative Biology. JNeurochem published an Obituary to value his outstanding achievements: Akio Wanaka et al. (2019) OBITUARY Kazuhiro Ikenaka (1952‐2018). https://doi.org/10.1111/jnc.14679

  相似文献   


5.
6.
Epigenetic modifications through methylation of DNA and acetylation of histones modulate neuronal gene expression and regulate long‐term memory. Earlier we demonstrated that scopolamine‐induced decrease in memory consolidation is correlated with enhanced expression of hippocampal DNA methyltransferase 1 (DNMT 1) and histone deacetylase 2 (HDAC 2) in mice. DNMT 1 and HDAC 2 act together by recruiting a co‐repressor complex and deacetylating the chromatin. The catalytic activity of HDAC s is mainly dependent on its incorporation into multiprotein co‐repressor complexes, among which SIN 3A‐HDAC 2 co‐repressor is widely studied to regulate synaptic plasticity. However, the involvement of co‐repressor complex in regulating memory loss or amnesia is unexplored. This study examines the role of co‐repressor SIN 3A in scopolamine‐induced amnesia through epigenetic changes in the hippocampus. Scopolamine treatment remarkably enhanced hippocampal SIN 3A expression in mice. To prevent such increase in SIN 3A expression, we used hippocampal infusion of SIN 3A‐siRNA and assessed the effect of SIN 3A silencing on scopolamine‐induced amnesia. Silencing of SIN 3A in amnesic mice reduced the binding of HDAC 2 at neuronal immediate early genes (IEG s) promoter, but did not change the expression of HDAC 2. Furthermore, it increased acetylation of H3K9 and H3K14 at neuronal IEG s (Arc, Egr1, Homer1 and Narp) promoter, prevented scopolamine‐induced down‐regulation of IEG s and improved consolidation of memory during novel object recognition task. These findings together suggest that SIN 3A has a critical role in regulation of synaptic plasticity and might act as a potential therapeutic target to rescue memory decline during amnesia and other neuropsychiatric pathologies.

  相似文献   

7.
It is well known that sleep disorders are harmful to people's health and performance, and growing evidence suggests that sleep deprivation (SD ) can trigger neuroinflammation in the brain. The nucleotide‐binding domain and leucine‐rich repeat protein‐3 (NLRP 3) inflammasome is reported to be relevant to the neuroinflammation induced by SD , but the regulatory signaling that governs the NLRP 3 inflammasome in SD is still unknown. Meanwhile, whether the regulatory action of antidepressants in astrocytes could affect the neuroinflammation induced by SD also remains obscure. In this study, we were the first to discover that the antidepressant fluoxetine, a type of specific serotonin reuptake inhibitor widely used in clinical practice, could suppress the neuroinflammation and neuronal apoptosis induced by SD . The main findings from this study are as follows: (i) SD stimulated the expression of activated NLRP 3 inflammasomes and the maturation of IL ‐1β/18 via suppressing the phosphorylation of STAT 3 in astrocytes; (ii) SD decreased the activation of AKT and stimulated the phosphorylation of GSK ‐3β, which inhibited the phosphorylation of STAT 3; (iii) the NLRP 3 inflammasome expression stimulated by SD was partly mediated by the P2X7 receptor; (iv) an agonist of STAT 3 could significantly abolish the expression of NLRP 3 inflammasomes induced by an agonist of the P2X7 receptor in primary cultured astrocytes; (v) the administration of fluoxetine could reverse the stimulation of NLRP 3 inflammasome expression and function by SD through elevating the activation of STAT 3. In conclusion, our present research suggests the promising possibility that fluoxetine could ameliorate the neuronal impairment induced by SD .

  相似文献   

8.
9.
10.
In humans a chromosomal hemideletion of the 16p11.2 region results in variable neurodevelopmental deficits including developmental delay, intellectual disability, and features of autism spectrum disorder (ASD). Serotonin is implicated in ASD but its role remains enigmatic. In this study we sought to determine if and how abnormalities in serotonin neurotransmission could contribute to the behavioral phenotype of the 16p11.2 deletion syndrome in a mouse model (Del mouse). As ASD is frequently associated with altered response to acute stress and stress may exacerbate repetitive behavior in ASD, we studied the Del mouse behavior in the context of an acute stress using the forced swim test, a paradigm well characterized with respect to serotonin. Del mice perseverated with active coping (swimming) in the forced swim test and failed to adopt passive coping strategies with time as did their wild‐type littermates. Analysis of monoamine content by HPLC provided evidence for altered endogenous serotonin neurotransmission in Del mice while there was no effect of genotype on any other monoamine. Moreover, we found that Del mice were highly sensitive to the 5‐HT2A antagonists M100907, which at a dose of 0.1 mg/kg normalized their level of active coping and restored the gradual shift to passive coping in the forced swim test. Supporting evidence for altered endogenous serotonin signaling was provided by observations of additional ligand effects including altered forebrain Fos expression. Taken together, these observations indicate notable changes in endogenous serotonin signaling in 16p11.2 deletion mice and support the therapeutic utility of 5‐HT2A receptor antagonists.

  相似文献   

11.
Characterization of the molecular signaling pathways underlying protein synthesis‐dependent forms of synaptic plasticity, such as late long‐term potentiation (L‐LTP ), can provide insights not only into memory expression/maintenance under physiological conditions but also potential mechanisms associated with the pathogenesis of memory disorders. Here, we report in mice that L‐LTP failure induced by the mammalian (mechanistic) target of rapamycin complex 1 (mTORC 1) inhibitor rapamycin is reversed by brain‐specific genetic deletion of PKR ‐like ER kinase, PERK (PERK KO ), a kinase for eukaryotic initiation factor 2α (eIF 2α). In contrast, genetic removal of general control non‐derepressible‐2, GCN 2 (GCN 2 KO ), another eIF 2α kinase, or treatment of hippocampal slices with the PERK inhibitor GSK 2606414, does not rescue rapamycin‐induced L‐LTP failure, suggesting mechanisms independent of eIF 2α phosphorylation. Moreover, we demonstrate that phosphorylation of eukaryotic elongation factor 2 (eEF 2) is significantly decreased in PERK KO mice but unaltered in GCN 2 KO mice or slices treated with the PERK inhibitor. Reduction in eEF 2 phosphorylation results in increased general protein synthesis, and thus could contribute to the mTORC 1‐independent L‐LTP in PERK KO mice. We further performed experiments on mutant mice with genetic removal of eEF 2K (eEF 2K KO ), the only known kinase for eEF 2, and found that L‐LTP in eEF 2K KO mice is insensitive to rapamycin. These data, for the first time, connect reduction in PERK activity with the regulation of translation elongation in enabling L‐LTP independent of mTORC 1. Thus, our findings indicate previously unrecognized levels of complexity in the regulation of protein synthesis‐dependent synaptic plasticity.

Read the Editorial Highlight for this article on page 119 . Cover Image for this issue: doi: 10.1111/jnc.14185 .
  相似文献   

12.
An increase in tau acetylation at K274 and K281 and abnormal mitochondrial dynamics have been observed in the brains of Alzheimer's disease (AD) patients. Here, we constructed three types of tau plasmids, TauKQ (acetylated tau mutant, by mutating its K274/K281 into glutamine to mimic disease-associated lysine acetylation), TauKR (non-acetylated tau mutant, by mutating its K274/K281 into arginine), and TauWT (wild-type human full-length tau). By transfecting these tau plasmids in HEK293 cells, we found that TauWT and TauKR induced mitochondrial fusion by increasing the level of mitochondrial fusion proteins. Conversely, TauKQ induced mitochondrial fission by reducing mitochondrial fusion proteins, exacerbating mitochondrial dysfunction and apoptosis. BGP-15 ameliorated TauKQ-induced mitochondrial dysfunction and apoptosis by improving mitochondrial dynamics. Our findings suggest that acetylation of K274/281 represents an important post-translational modification site regulating mitochondrial dynamics, and that BGP-15 holds potential as a therapeutic agent for mitochondria-associated diseases such as AD.

  相似文献   


13.
The thalamic synapses relay peripheral sensory information to the cortex, and constitute an important part of the thalamocortical network that generates oscillatory activities responsible for different vigilance (sleep and wakefulness) states. However, the modulation of thalamic synaptic transmission by potential sleep regulators, especially by combination of regulators in physiological scenarios, is not fully characterized. We found that somnogen adenosine itself acts similar to wake‐promoting serotonin, both decreasing synaptic strength as well as short‐term depression, at the retinothalamic synapse. We then combined the two modulators considering the coexistence of them in the hypnagogic (sleep‐onset) state. Adenosine plus serotonin results in robust synergistic inhibition of synaptic strength and dramatic transformation of short‐term synaptic depression to facilitation. These synaptic effects are not achievable with a single modulator, and are consistent with a high signal‐to‐noise ratio but a low level of signal transmission through the thalamus appropriate for slow‐wave sleep. This study for the first time demonstrates that the sleep‐regulatory modulators may work differently when present in combination than present singly in terms of shaping information flow in the thalamocortical network. The major synaptic characters such as the strength and short‐term plasticity can be profoundly altered by combination of modulators based on physiological considerations.

  相似文献   


14.
While motivated behavior involves multiple neurochemical systems, few studies have focused on the role of glutamate, the brain's excitatory neurotransmitter, and glucose, the energetic substrate of neural activity in reward‐related neural processes. Here, we used high‐speed amperometry with enzyme‐based substrate‐sensitive and control, enzyme‐free biosensors to examine second‐scale fluctuations in the extracellular levels of these substances in the nucleus accumbens shell during glucose‐drinking behavior in trained rats. Glutamate rose rapidly after the presentation of a glucose‐containing cup and before the initiation of drinking (reward seeking), decreased more slowly to levels below baseline during consumption (sensory reward), and returned to baseline when the ingested glucose reached the brain (metabolic reward). When water was substituted for glucose, glutamate rapidly increased with cup presentation and in contrast to glucose drinking, increased above baseline after rats tasted the water and refused to drink further. Therefore, extracellular glutamate show distinct changes associated with key events of motivated drinking behavior and opposite dynamics during sensory and metabolic components of reward. In contrast to glutamate, glucose increased at each stimulus and behavioral event, showing a sustained elevation during the entire behavior and a robust post‐ingestion rise that correlated with the gradual return of glutamate levels to their baseline. By comparing active drinking with passive intra‐gastric glucose delivery, we revealed that fluctuations in extracellular glucose are highly dynamic, reflecting a balance between rapid delivery because of neural activity, intense metabolism, and the influence of ingested glucose reaching the brain.

  相似文献   


15.
Because the cholinergic system is down‐regulated in the brain of Alzheimer's disease patients, cognitive deficits in Alzheimer's disease patients are significantly improved by rivastigmine treatment. To address the mechanism underlying rivastigmine‐induced memory improvements, we chronically treated olfactory bulbectomized (OBX) mice with rivastigmine. The chronic rivastigmine treatments for 12–13 days starting at 10 days after OBX operation significantly improved memory‐related behaviors assessed by Y‐maze task, novel object recognition task, passive avoidance task, and Barnes maze task, whereas the single rivastigmine treatment failed to improve the memory. Consistent with the improved memory‐related behaviors, long‐term potentiation in the hippocampal CA1 region was markedly restored by rivastigmine treatments. In immunoblotting analyses, the reductions of calcium/calmodulin‐dependent protein kinase II (CaMKII) autophosphorylation and calcium/calmodulin‐dependent protein kinase IV (CaMKIV) phosphorylation in the CA1 region in OBX mice were significantly restored by rivastigmine treatments. In addition, phosphorylation of AMPAR subunit glutamate receptor 1 (GluA1) (Ser‐831) and cAMP‐responsive element‐binding protein (Ser‐133) as downstream targets of CaMKII and CaMKIV, respectively, in the CA1 region was also significantly restored by chronic rivastigmine treatments. Finally, we confirmed that rivastigmine‐induced improvements of memory‐related behaviors and long‐term potentiation were not obtained in CaMKIIα+/? mice. On the other hand, CaMKIV?/? mice did not exhibit the cognitive impairments. Taken together, the stimulation of CaMKII activity in the hippocampus is essential for rivastigmine‐induced memory improvement in OBX mice.

  相似文献   


16.
Reactive astrogliosis, characterized by cellular hypertrophy and various alterations in gene expression and proliferative phenotypes, is considered to contribute to brain injuries and diseases as diverse as trauma, neurodegeneration, and ischemia. KCa3.1 (intermediate‐conductance calcium‐activated potassium channel), a potassium channel protein, has been reported to be up‐regulated in reactive astrocytes after spinal cord injury in vivo. However, little is known regarding the exact role of KCa3.1 in reactive astrogliosis. To elucidate the role of KCa3.1 in regulating reactive astrogliosis, we investigated the effects of either blocking or knockout of KCa3.1 channels on the production of astrogliosis and astrocytic proliferation in response to transforming growth factor (TGF)‐β in primary cultures of mouse astrocytes. We found that TGF‐β increased KCa3.1 protein expression in astrocytes, with a concomitant marked increase in the expression of reactive astrogliosis, including glial fibrillary acidic protein and chondroitin sulfate proteoglycans. These changes were significantly attenuated by the KCa3.1 inhibitor 1‐((2‐chlorophenyl) (diphenyl)methyl)‐1H‐pyrazole (TRAM‐34). Similarly, the increase in glial fibrillary acidic protein and chondroitin sulfate proteoglycans in response to TGF‐β was attenuated in KCa3.1?/? astrocytes. TRAM‐34 also suppressed astrocytic proliferation. In addition, the TGF‐β‐induced phosphorylation of Smad2 and Smad3 proteins was reduced with either inhibition of KCa3.1 with TRAM‐34 or in KCa3.1?/? astrocytes. These findings highlight a novel role for the KCa3.1 channel in reactive astrogliosis phenotypic modulation and provide a potential target for therapeutic intervention for brain injuries.

  相似文献   


17.
For our nervous system to function properly, each neuron must generate a single axon and elongate the axon to reach its target. It is known that actin filaments and their dynamic interaction with microtubules within growth cones play important roles in inducing axon extension. However, it remains unclear how cytoskeletal dynamics is controlled in growth cones. In this study, we report that Rufy3, a RUN domain‐containing protein, is a neuron‐specific and actin filament‐relevant protein. We find that the appropriate expression of Rufy3 in mouse hippocampal neurons is required for the development of a single axon and axon growth. Our results show that Rufy3 specifically interacts with actin filament‐binding proteins, such as Fascin, and colocalizes with Fascin in growth cones. Knockdown of Rufy3 impairs the distribution of Fascin and actin filaments, accompanied by an increased proportion of neurons with multiple axons and a decrease in the axon length. Therefore, Rufy3 may be particularly important for neuronal axon elongation by interacting with Fascin to control actin filament organization in axonal growth cones.

  相似文献   


18.
Cu/Zn‐superoxide dismutase is misfolded in familial and sporadic amyotrophic lateral sclerosis, but it is not clear how this triggers endoplasmic reticulum (ER) stress or other pathogenic processes. Here, we demonstrate that mutant SOD1 (mSOD1) is predominantly found in the cytoplasm in neuronal cells. Furthermore, we show that mSOD1 inhibits secretory protein transport from the ER to Golgi apparatus. ER‐Golgi transport is linked to ER stress, Golgi fragmentation and axonal transport and we also show that inhibition of ER‐Golgi trafficking preceded ER stress, Golgi fragmentation, protein aggregation and apoptosis in cells expressing mSOD1. Restoration of ER‐Golgi transport by over‐expression of coatomer coat protein II subunit Sar1 protected against inclusion formation and apoptosis, thus linking dysfunction in ER‐Golgi transport to cellular pathology. These findings thus link several cellular events in amyotrophic lateral sclerosis into a single mechanism occurring early in mSOD1 expressing cells.

  相似文献   


19.
Proper neuronal function requires essential biological cargoes to be packaged within membranous vesicles and transported, intracellularly, through the extensive outgrowth of axonal and dendritic fibers. The precise spatiotemporal movement of these cargoes is vital for neuronal survival and, thus, is highly regulated. In this study we test how the axonal movement of a neuropeptide‐containing dense‐core vesicle (DCV ) responds to alcohol stressors. We found that ethanol induces a strong anterograde bias in vesicle movement. Low doses of ethanol stimulate the anterograde movement of neuropeptide‐DCV while high doses inhibit bi‐directional movement. This process required the presence of functional kinesin‐1 motors as reduction in kinesin prevented the ethanol‐induced stimulation of the anterograde movement of neuropeptide‐DCV . Furthermore, expression of inactive glycogen synthase kinase 3 (GSK ‐3β) also prevented ethanol‐induced stimulation of neuropeptide‐DCV movement, similar to pharmacological inhibition of GSK ‐3β with lithium. Conversely, inhibition of PI 3K/AKT signaling with wortmannin led to a partial prevention of ethanol‐stimulated transport of neuropeptide‐DCV . Taken together, we conclude that GSK ‐3β signaling mediates the stimulatory effects of ethanol. Therefore, our study provides new insight into the physiological response of the axonal movement of neuropeptide‐DCV to exogenous stressors.

Cover Image for this Issue: doi: 10.1111/jnc.14165 .
  相似文献   

20.
The administration of pan histone deacetylase (HDAC) inhibitors reduces ischemic damage to the CNS, both in vitro and in animal models of stroke, via mechanisms which we are beginning to understand. The acetylation of p53 is regulated by Class I HDACs and, because p53 appears to play a role in ischemic pathology, the purpose of this study was to discover, using an in vitro white matter ischemia model and an in vivo cerebral ischemia model, if neuroprotection mediated by HDAC inhibition depended on p53 expression. Optic nerves were excised from wild‐type and p53‐deficient mice, and then subjected to oxygen–glucose deprivation in the presence and absence of a specific inhibitor of Class I HDACs (MS‐275, entinostat) while compound action potentials were recorded. Furthermore, transient focal ischemia was imposed on wild‐type and p53‐deficient mice, which were subsequently treated with MS‐275. Interestingly, and in both scenarios, the beneficial effects of MS‐275 were most pronounced when p53 was absent. These results suggest that modulation of p53 activity is not responsible for MS‐275‐mediated neuroprotection, and further illustrate how HDAC inhibitors variably influence p53 and associated apoptotic pathways.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号