首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This Editorial highlights a study by Zimmermann and coworkers in the current issue of Journal of Neurochemistry. The authors' link suppression of PKR‐like endoplasmatic reticulum kinase (PERK) activity to eukaryotic elongation factor 2 (eEF2) dephosphorylation and mTORC1‐independent high‐frequency stimulation (HFS)‐induced long‐term potentiation (LTP) in acute hippocampal slices from PERK forebrain conditional knockout mice. The results suggest that functional interaction between the signaling pathways controlling different phases of the mRNA translation process is necessary for long‐term plasticity in the hippocampus.

  相似文献   


2.
Growth factors and nutrients, such as amino acids and glucose, regulate mammalian target of rapamycin complex 1 (mTORC1) signaling and subsequent translational control in a coordinated manner. Brain‐derived neurotrophic factor (BDNF), the most prominent neurotrophic factor in the brain, activates mTORC1 and induces phosphorylation of its target, p70S6 kinase (p70S6K), at Thr389 in neurons. BDNF also increases mammalian target of rapamycin‐dependent novel protein synthesis in neurons. Here, we report that BDNF‐induced p70S6K activation is dependent on glucose, but not amino acids, sufficiency in cultured cortical neurons. AMP‐activated protein kinase (AMPK) is the molecular background to this specific nutrient dependency. Activation of AMPK, which is induced by glucose deprivation, treatment with pharmacological agents such as 2‐Deoxy‐d ‐glucose, metformin, and 5‐aminoimidazole‐4‐carboxamide ribonucleoside or forced expression of a constitutively active AMPKα subunit, counteracts BDNF‐induced phosphorylation of p70S6K and enhanced protein synthesis in cortical neurons. These results indicate that AMPK inhibits the effects of BDNF on mTORC1‐mediated translation in neurons.

  相似文献   


3.
Chronic stress represents a major environmental risk factor for mood disorders in vulnerable individuals. The neurobiological mechanisms underlying these disorders involve serotonergic and endocannabinoid systems. In this study, we have investigated the relationships between these two neurochemical systems in emotional control using genetic and imaging tools. CB1 cannabinoid receptor knockout mice (KO) and wild‐type littermates (WT) were exposed to chronic restraint stress. Depressive‐like symptoms (anhedonia and helplessness) were produced by chronic stress exposure in WT mice. CB1 KO mice already showed these depressive‐like manifestations in non‐stress conditions and the same phenotype was observed after chronic restraint stress. Chronic stress similarly impaired long‐term memory in both genotypes. In addition, brain levels of serotonin transporter (5‐HTT) were assessed using positron emission tomography. Decreased brain 5‐HTT levels were revealed in CB1 KO mice under basal conditions, as well as in WT mice after chronic stress. Our results show that chronic restraint stress induced depressive‐like behavioral alterations and brain changes in 5‐HTT levels similarly to those revealed in CB1 KO mice in non‐stressed conditions. These results underline the relevance of chronic environmental stress on serotonergic and endocannabinoid transmission for the development of depressive symptoms.

  相似文献   


4.
Imprinting in chicks is a good model for elucidating the processes underlying neural plasticity changes during juvenile learning. We recently reported that neural activation of a telencephalic region, the core region of the hyperpallium densocellulare (HDCo), was critical for success of visual imprinting, and that N‐Methyl‐D‐aspartic (NMDA) receptors containing the NR2B subunit (NR2B/NR1) in this region were essential for imprinting. Using electrophysiological and multiple‐site optical imaging techniques with acute brain slices, we found that long‐term potentiation (LTP) and enhancement of NR2B/NR1 currents in HDCo neurons were induced in imprinted chicks. Enhancement of NR2B/NR1 currents as well as an increase in surface NR2B expression occurred even following a brief training that was too weak to induce LTP or imprinting behavior. This means that NR2B/NR1 activation is the initial step of learning, well before the activation of alpha‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate receptors which induces LTP. We also showed that knockdown of NR2B/NR1 inhibited imprinting, and inversely, increasing the surface NR2B expression by treatment with a casein kinase 2 inhibitor successfully reduced training time required for imprinting. These results suggest that imprinting stimuli activate post‐synaptic NR2B/NR1 in HDCo cells, increase NR2B/NR1 signaling through up‐regulation of its expression, and induce LTP and memory acquisition.

  相似文献   


5.
The mammalian (or mechanistic) target of rapamycin (mTOR) complex 1 (mTORC1) is a serine and threonine kinase that regulates cell growth, survival, and proliferation. mTORC1 is a master controller of the translation of a subset of mRNAs. In the central nervous system mTORC1 plays a crucial role in mechanisms underlying learning and memory by controlling synaptic protein synthesis. Here, we review recent evidence suggesting that the mTORC1 signaling pathway promotes neuroadaptations following exposure to a diverse group of drugs of abuse including stimulants, cannabinoids, opiates, and alcohol. We further describe potential molecular mechanisms by which drug‐induced mTORC1 activation may alter brain functions. Finally, we propose that mTORC1 is a focal point shared by drugs of abuse to mediate drug‐related behaviors such as reward seeking and excessive drug intake, and offer future directions to decipher the contribution of the kinase to mechanisms underlying addiction.

  相似文献   


6.
Interleukin‐1β (IL‐1β) is essential for eliciting protective immunity during the acute phase of Staphylococcus aureus (S. aureus) infection in the central nervous system (CNS). We previously demonstrated that microglial IL‐1β production in response to live S. aureus is mediated through the Nod‐like receptor protein 3 (NLRP3) inflammasome, including the adapter protein ASC (apoptosis‐associated speck‐like protein containing a caspase‐1 recruitment domain), and pro‐caspase 1. Here, we utilized NLRP3, ASC, and caspase 1/11 knockout (KO) mice to demonstrate the functional significance of inflammasome activity during CNS S. aureus infection. ASC and caspase 1/11 KO animals were exquisitely sensitive, with approximately 50% of mice succumbing to infection within 24 h. Unexpectedly, the survival of NLRP3 KO mice was similar to wild‐type animals, suggesting the involvement of an alternative upstream sensor, which was later identified as absent in melanoma 2 (AIM2) based on the similar disease patterns between AIM2 and ASC KO mice. Besides IL‐1β, other key inflammatory mediators, including IL‐6, CXCL1, CXCL10, and CCL2 were significantly reduced in the CNS of AIM2 and ASC KO mice, implicating autocrine/paracrine actions of IL‐1β, as these mediators do not require inflammasome processing for secretion. These studies demonstrate a novel role for the AIM2 inflammasome as a critical molecular platform for regulating IL‐1β release and survival during acute CNS S. aureus infection.

  相似文献   


7.
HIV‐1 invades CNS in the early course of infection, which can lead to the cascade of neuroinflammation. NADPH oxidases (NOXs) are the major producers of reactive oxygen species (ROS), which play important roles during pathogenic insults. The molecular mechanism of ROS generation via microRNA‐mediated pathway in human microglial cells in response to HIV‐1 Tat protein has been demonstrated in this study. Over‐expression and knockdown of microRNAs, luciferase reporter assay, and site‐directed mutagenesis are main molecular techniques used in this study. A significant reduction in miR‐17 levels and increased NOX2, NOX4 expression levels along with ROS production were observed in human microglial cells upon HIV‐1 Tat C exposure. The validation of NOX2 and NOX4 as direct targets of miR‐17 was done by luciferase reporter assay. The over‐expression and knockdown of miR‐17 in human microglial cells showed the direct role of miR‐17 in regulation of NOX2, NOX4 expression and intracellular ROS generation. We demonstrated the regulatory role of cellular miR‐17 in ROS generation through over‐expression and knockdown of miR‐17 in human microglial cells exposed to HIV‐1 Tat C protein.

  相似文献   


8.
9.
10.
Tuberous sclerosis complex (TSC ) is an autosomal dominant neurogenetic disorder affecting about 1 in 6000 people and is caused by mutations in either TSC 1 or TSC 2 . This disorder is characterized by increased activity of mammalian target of rapamycin complex 1 (mTORC 1), which is involved in regulating ribosomal biogenesis and translation initiation. We measured the effects of Tsc2 haploinsufficiency (Tsc2 +/? ) in 3‐month‐old male mice on regional rates of cerebral protein synthesis (rCPS ) by means of the in vivo L‐[1‐14C]leucine method. This quantitative autoradiographic method includes an estimate of the integrated specific activity of the tracer amino acid in brain tissue. The estimate accounts for recycling of unlabeled amino acids from tissue protein breakdown by means of a factor (λ) that was determined in control and Tsc2 +/? mice. The value of λ was higher in Tsc2 +/? mice, indicating that a greater fraction of leucine in the tissue precursor pool for protein synthesis is derived from the plasma compared to controls, consistent with reduced rates of protein degradation. We determined rCPS in freely moving, awake male Tsc2 +/? and control mice, and we used the determined values of λ in the calculation of rCPS . Unexpectedly, we found that rCPS were significantly decreased in 16 of the 17 brain regions analyzed in Tsc2 +/? mice compared to controls. Our results indicate a complex role of mTORC 1 in the regulation of cerebral protein synthesis that has not been previously recognized.

  相似文献   

11.
Glioblastomas are lethal brain tumors that resist current cytostatic therapies. Vitamin C may antagonize the effects of reactive oxygen species (ROS) generating therapies; however, it is often used to reduce therapy‐related side effects despite its effects on therapy or tumor growth. Because the mechanisms of vitamin C uptake in gliomas are currently unknown, we evaluated the expression of the sodium‐vitamin C cotransporter (SVCT) and facilitative hexose transporter (GLUT) families in human glioma cells. In addition, as microglial cells can greatly infiltrate high‐grade gliomas (constituting up to 45% of cells in glioblastomas), the effect of TC620 glioma cell interactions with microglial‐like HL60 cells on vitamin C uptake (Bystander effect) was determined. Although glioma cells expressed high levels of the SVCT isoform‐2 (SVCT2), low functional activity, intracellular localization and the expression of the dominant‐negative isoform (dnSVCT2) were observed. The increased glucose metabolic activity of glioma cells was evident by the high 2‐Deoxy‐d ‐glucose and dehydroascorbic acid (DHA) uptake rates through the GLUT isoform‐1 (GLUT1), the main DHA transporter in glioblastoma. Co‐culture of glioma cells and activated microglial‐like HL60 cells resulted in extracellular ascorbic acid oxidation and high DHA uptake by glioma cells. This Bystander effect may explain the high antioxidative potential observed in high‐grade gliomas.

  相似文献   


12.
Septic encephalopathy with confusion and agitation occurs early during sepsis and contributes to the severity of the disease. A decrease in the sphingosine‐1‐phosphate (S1P) blood levels has been shown in patients and in animal models of sepsis. The lipid mediator S1P is known to be involved in endothelial barrier function in a context‐dependent manner. We utilized lipopolysaccharide (LPS )‐injected mice as a model for septic encephalopathy and first performed tracer permeability assays to assess the blood–brain barrier (BBB ) breakdown in vivo. At time points corresponding to the BBB breakdown post LPS injection, we aimed to characterize the regulation of the sphingolipid signaling pathway at the BBB during sepsis. We measured sphingolipid concentrations in blood, in mouse brain microvessels (MBMV s), and brain tissue. We also analyzed the expression of S1P receptors, transporters, and metabolizing enzymes in MBMV s and brain tissue. Primary mouse brain microvascular endothelial cells (MBMEC s) were isolated to evaluate the effects of LPS on transendothelial electrical resistance (TEER ) as a measure of permeability in vitro . We observed a relevant decrease in S1P levels after LPS injection in all three compartments (blood, MBMV s, brain tissue) that was accompanied by an increased expression of the S1P receptor type 1 and of sphingosine kinase 1 on one hand and of the S1P degrading enzymes lipid phosphate phosphatase 1 (LPP 1) and S1P phosphatase 1 on the other hand, as well as a down‐regulation of sphingosine kinase 2. Application of LPS to a monolayer of primary MBMEC s did not alter TEER , but serum from LPS ‐treated mice lead to a breakdown of the barrier compared to serum from vehicle‐treated mice. We observed profound alterations of the sphingolipid metabolism at the BBB after LPS injection that point toward a therapeutic potential of drugs interfering with this pathway as novel approach for the detrimental overwhelming immune response in sepsis.

Read the Editorial Highlight for this article on page 115 . Cover Image for this Issue: doi. 10.1111/jnc.14161 .
  相似文献   

13.
Abnormal autophagy may contribute to neurodegeneration in Parkinson's disease (PD). However, it is largely unknown how autophagy is dysregulated by oxidative stress (OS), one of major pathogenic causes of PD. We recently discovered the potential autophagy regulator gene family including Tnfaip8/Oxi‐α, which is a mammalian target of rapamycin (mTOR) activator down‐regulated by OS in dopaminergic neurons (J. Neurochem., 112, 2010 , 366). Here, we demonstrate that the OS‐induced Tnfaip8 l1/Oxi‐β could increase autophagy by a unique mechanism that increases the stability of tuberous sclerosis complex 2 (TSC2), a critical negative regulator of mTOR. Tnfaip8 l1/Oxi‐β and Tnfaip8/Oxi‐α are the novel regulators of mTOR acting in opposition in dopaminergic (DA) neurons. Specifically, 6‐hydroxydopamine (6‐OHDA) treatment up‐regulated Tnfaip8 l1/Oxi‐β in DA neurons, thus inducing autophagy, while knockdown of Tnfaip8 l1/Oxi‐β prevented significantly activation of autophagic markers by 6‐OHDA. FBXW5 was identified as a novel binding protein for Tnfaip8 l1/Oxi‐β. FBXW5 is a TSC2 binding receptor within CUL4 E3 ligase complex, and it promotes proteasomal degradation of TSC2. Thus, Tnfaip8 l1/Oxi‐β competes with TSC2 to bind FBXW5, increasing TSC2 stability by preventing its ubiquitination. Our data show that the OS‐induced Tnfaip8 l1/Oxi‐β stabilizes TSC2 protein, decreases mTOR phosphorylation, and enhances autophagy. Therefore, altered regulation of Tnfaip8 l1/Oxi‐β may contribute significantly to dysregulated autophagy observed in dopaminergic neurons under pathogenic OS condition.

  相似文献   


14.
It has been proposed that GM1 ganglioside promotes neuronal growth, phenotypic expression, and survival by modulating tyrosine kinase receptors for neurotrophic factors. Our studies tested the hypothesis that GM1 exerts its neurotrophic action on dopaminergic neurons, in part, by interacting with the GDNF (glia cell‐derived neurotrophic factor) receptor complex, Ret tyrosine kinase and GFRα1 co‐receptor. GM1 addition to striatal slices in situ increased Ret activity in a concentration‐ and time‐dependent manner. GM1‐induced Ret activation required the whole GM1 molecule and was inhibited by the kinase inhibitors PP2 and PP1. Ret activation was followed by Tyr1062 phosphorylation and PI3 kinase/Akt recruitment. The Src kinase was associated with Ret and GM1 enhanced its phosphorylation. GM1 responses required the presence of GFRα1, and there was a GM1 concentration‐dependent increase in the binding of endogenous GDNF which paralleled that of Ret activation. Neutralization of the released GDNF did not influence the Ret response to GM1, and GM1 had no effect on GDNF release. Our in situ studies suggest that GM1 via GFRα1 modulates Ret activation and phosphorylation in the striatum and provide a putative mechanism for its effects on dopaminergic neurons. Indeed, chronic GM1 treatment enhanced Ret activity and phosphorylation in the striatum of the MPTP‐mouse and kinase activation was associated with recovery of dopamine and DOPAC deficits.

  相似文献   


15.
Mitochondrial metabolism is highly responsive to nutrient availability and ongoing activity in neuronal circuits. The molecular mechanisms by which brain cells respond to an increase in cellular energy expenditure are largely unknown. Mild mitochondrial uncoupling enhances cellular energy expenditure in mitochondria and can be induced with 2,4‐dinitrophenol (DNP), a proton ionophore previously used for weight loss. We found that DNP treatment reduces mitochondrial membrane potential, increases intracellular Ca2+ levels and reduces oxidative stress in cerebral cortical neurons. Gene expression profiling of the cerebral cortex of DNP‐treated mice revealed reprogramming of signaling cascades that included suppression of the mammalian target of rapamycin (mTOR) and insulin – PI3K – MAPK pathways, and up‐regulation of tuberous sclerosis complex 2, a negative regulator of mTOR. Genes encoding proteins involved in autophagy processes were up‐regulated in response to DNP. CREB (cAMP‐response element‐binding protein) signaling, Arc and brain‐derived neurotrophic factor, which play important roles in synaptic plasticity and adaptive cellular stress responses, were up‐regulated in response to DNP, and DNP‐treated mice exhibited improved performance in a test of learning and memory. Immunoblot analysis verified that key DNP‐induced changes in gene expression resulted in corresponding changes at the protein level. Our findings suggest that mild mitochondrial uncoupling triggers an integrated signaling response in brain cells characterized by reprogramming of mTOR and insulin signaling, and up‐regulation of pathways involved in adaptive stress responses, molecular waste disposal, and synaptic plasticity.

  相似文献   


16.
The consumption of ethanol by pregnant women may cause neurological abnormalities, affecting learning and memory processes in children, and are collectively described as fetal alcohol spectrum disorders. However, the molecular mechanisms underlying these changes are still poorly understood. In our previous studies, we found that ethanol treatment of postnatal day 7 (P7) mice significantly enhances the anandamide levels but not the 2‐arachidonylglycerol (2‐AG) levels and induces widespread neurodegeneration, but the reason for the lack of significant effects of ethanol on the 2‐AG level is unknown. In this study, we examined developmental changes in diacylglycerol lipase‐α, β (DAGL‐α and β) and monoacylglycerol lipase (MAGL). We found that the levels of these proteins were significantly higher in adult brains compared to those detected early in brain development. Next, we examined the influence of P7 ethanol treatment on these enzymes, finding that it differentially altered the DAGL‐α protein and mRNA levels but consistently enhanced those of the DAGL‐β. Interestingly, the ethanol treatment enhanced MAGL protein and mRNA levels. Inhibition of MAGL with KML29 failed to induce neurodegeneration in P7 mice. Collectively, these findings suggest that ethanol significantly activates DAGL‐β and MAGL in the neonatal brain, resulting in no net change in 2‐AG levels.

  相似文献   


17.
18.
Trafficking of G protein‐coupled receptors plays a crucial role in controlling the precise signalling of the receptor as well as its proper regulation. Metabotropic glutamate receptor 1 (mGluR1), a G protein‐coupled receptor, is a member of the group I mGluR family. mGluR1 plays a critical role in neuronal circuit formation and also in multiple types of synaptic plasticity. This receptor has also been reported to be involved in various neuropsychiatric diseases. Other than the central nervous system, mGluR1 plays crucial roles in various non‐neuronal cells like hepatocytes, skin cells, etc. Although it has been reported that mGluR1 gets endocytosed on ligand application, the events after the internalization of the receptor has not been studied. We show here that mGluR1 internalizes on ligand application. Subsequent to endocytosis, majority of the receptors localize at the recycling compartment and no significant presence of the receptor was noticed in the lysosome. Furthermore, mGluR1 returned to the cell membrane subsequent to ligand‐mediated internalization. We also show here that the recycling of mGluR1 is dependent on the activity of protein phosphatase 2A. Thus, our data suggest that the ligand‐mediated internalized receptors recycle back to the cell surface in protein phosphatase 2A‐dependent manner.

  相似文献   


19.
20.
Cell adhesion molecule L1 promotes neuritogenesis and neuronal survival through triggering MAPK pathways. Based on the findings that L1 is associated with casein kinase 2 (CK2), and that deficiency in PTEN promotes neuritogenesis in vitro and regeneration after trauma, we examined the functional relationship between L1 and PTEN. In parallel, we investigated the tumor suppressor p53, which also regulates neuritogenesis. Here, we report that the intracellular domain of L1 binds to the subunit CK2α, and that knockdown of L1 leads to CK2 dephosphorylation and an increase in PTEN and p53 levels. Overexpression of L1, but not the L1 mutants L1 (S1181N, E1184V), which reduced binding between L1 and CK2, reduced expression levels of PTEN and p53 proteins, and enhanced levels of phosphorylated CK2α and mammalian target of rapamycin, which is a downstream effector of PTEN and p53. Treatment of neurons with a CK2 inhibitor or transfection with CK2α siRNA increased levels of PTEN and p53, and inhibited neuritogenesis. The combined observations indicate that L1 downregulates expression of PTEN and p53 via direct binding to CK2α. We suggest that L1 stimulates neuritogenesis by activating CK2α leading to decreased levels of PTEN and p53 via a novel, L1‐triggered and CK2α‐mediated signal transduction pathway.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号