首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistance to cationic antimicrobial peptide polymyxin B from Gram-negative bacteria is accomplished by two-component systems (TCSs), protein complexes PmrA/PmrB and PhoP/PhoQ. PmrD is the first protein identified to mediate the connectivity between two TCSs. The 3D structure of PmrD has been recently solved by NMR and its unique fold was revealed. Here, a molecular dynamics study is presented started from the NMR structure. Numerous hydrophobic and electrostatic interactions were identified to contribute to PmrD's 3D stability. Moreover, the mobility of the five loops that connect the protein's six β-strands has been explored. Solvent-accessible surface area calculation revealed that a Leucine-rich hydrophobic cluster of the protein stabilized the protein's structure.  相似文献   

2.
3.
4.
In bacteria, the two-component system is the most prevalent for sensing and transducing environmental signals into the cell. The PmrA-PmrB two-component system, responsible for sensing external stimuli of high Fe3+ and mild acidic conditions, can control the genes involved in lipopolysaccharide modification and polymyxin resistance in pathogens. In Klebsiella pneumoniae, the small basic connector protein PmrD protects phospho-PmrA and prolongs the expression of PmrA-activated genes. We previously determined the phospho-PmrA recognition mode of PmrD. However, how PmrA interacts with PmrD and prevents its dephosphorylation remains unknown. To address this question, we solved the x-ray crystal structure of the N-terminal receiver domain of BeF3-activated PmrA (PmrAN) at 1.70 Å. With this structure, we applied the data-driven docking method based on NMR chemical shift perturbation to generate the complex model of PmrD-PmrAN, which was further validated by site-directed spin labeling experiments. In the complex model, PmrD may act as a blockade to prevent phosphatase from contacting with the phosphorylation site on PmrA.  相似文献   

5.
6.
7.
Bacteria have many two-component signal-transduction systems (TCSs) that respond to specific environmental signals by altering the phosphorylated state of a response regulator. Although these systems are presumed to form an intricate signal network, the detailed mechanism of how they interact with each other remains largely unexplained. In a recent study of Salmonella, two TCSs have been discovered to be connected by a protein that protects a response regulator from dephosphorylation promoted by its cognate sensor kinase. This novel mechanism might provide an answer to some of the linkages found between other TCSs.  相似文献   

8.
9.
10.
11.
12.
Salmonella enterica polymyxin B (PM) resistance is modulated mainly by substitutions of the acyl chains and the phosphate groups on the lipid A moiety of lipopolysaccharide. These modifications are mediated by genes under the control of the PmrA/PmrB and PhoP/PhoQ two-component regulatory systems. In this study, a deletion in the gene encoding the alternative σ54 factor, rpoN , was shown to increase PM resistance without affecting protamine sensitivity. The results presented here showed that the increased polymyxin resistance observed in the Δ rpoN mutant occurs through a PmrA/PhoP-independent pathway. Downregulation of one or more genes belonging to the RpoN regulon may provide an additional mechanism of defence against membrane-permeabilizing antimicrobial peptides that helps the pathogen to survive in different environments.  相似文献   

13.
We have isolated from Salmonella typhimurium a gene, designated pmrD, that confers resistance to the membrane-damaging drug, polymyxin B when expressed from the medium-copy-number plasmid pHSG576. The gene maps to 46 min on the standard genetic map, near the menB gene, and is therefore distinct from the previously described pmrA locus. We have mapped the polymyxin resistance activity to a 1.3-kb ClaI-PvuII fragment which contains a small open reading frame that could encode an 85-amino-acid peptide. When an omega-Tet insertion was made into the putative pmrD open reading frame (pmrD2::omega-Tet), the resulting plasmid no longer conferred polymyxin resistance, whereas an omega-Tet insertion into vector sequences had no effect. Maxicell analysis confirmed that a protein of the expected size is made in vivo. The PmrD protein shows no significant homology to any known protein, but it does show limited homology across the active site of the p15 acid protease from Rous sarcoma virus, indicating that the protein may have proteolytic activity. However, changing the aspartic acid residue at the putative active site to alanine reduced but did not eliminate polymyxin resistance. When pmrD2::omega-Tet replaced the chromosomal copy of pmrD, the resulting strain showed wild-type sensitivity to polymyxin and could be complemented to resistance by a plasmid that carried pmrD. The pmrA505 allele confers resistance to polymyxin when present in single copy on the chromosome or when present on a plasmid in pmrA+ pmrD+ cells. In combination with the pmrD(2)::-Tet mutation, the effect o the pmrA505 allele on polymyxin resistance was reduced, whether pmrA505 was present in the chromosome or on a plasmid. Conversely, a strain carrying an insertion in pmrA could be complemented to polymyxin resistance by a plasmid carrying the pmrA505 allele but not by a plasmid carrying pmrD. On the basis of these results, we suggest that polymyxin resistance is mediated by an interaction between PmrA or a PmrA-regulated gene product and PmrD.  相似文献   

14.
15.
Efficient response to environmental cues is crucial to successful infection by plant-pathogenic bacteria such as Erwinia carotovora ssp. carotovora. The expression of the main virulence genes of this pathogen, encoding extracellular enzymes that degrade the plant-cell wall, is subject to complex regulatory machinery where two-component systems play an important role. In this paper, we describe for the first time the involvement of the PmrA-PmrB two-component system in regulation of virulence in a plant-pathogenic bacterium. Disruption of pmrB resulted in reduced virulence both in potato and in Arabidopsis. This is apparently due to reduced production of the extracellular enzymes. In contrast, a pmrA mutant exhibited increased levels of these enzymes implying negative regulation of the corresponding genes by PmrA. Furthermore, the pmrB but not pmrA mutant exhibited highly increased resistance to the cationic antimicrobial peptide polymyxin B suggesting alterations in cell surface properties of the mutant. A similar increase of polymyxin resistance was detected in the wild type at mildly acidic pH with low Mg2+. Functional pmrA is essential for bacterial survival on excess iron at acidic pH, regardless of the Mg2+ concentration. We propose that PmrA-PmrB TCS is involved in controlling of bacterial response to external pH and iron and is crucial for bacterial virulence and survival in planta.  相似文献   

16.
17.
The typical two-component regulatory systems (TCSs), consisting of response regulator and histidine kinase, play a central role in survival of pathogenic bacteria under stress conditions such as nutrient starvation, hypoxia, and nitrosative stress. A total of 11 complete paired two-component regulatory systems have been found in Mycobacterium tuberculosis, including a few isolated kinase and regulatory genes. Increasing evidence has shown that TCSs are closely associated with multiple physiological process like intracellular persistence, pathogenicity, and metabolism. This review gives the two-component signal transduction systems in M. tuberculosis and their signal transduction roles in adaption to the environment.  相似文献   

18.
The formation of photosynthetic complexes in facultatively photosynthetic bacteria is controlled by the oxygen tension in the environment. In Rhodobacter capsulatus the two-component system RegB/RegA plays a major role in the redox control of photosynthesis genes but also controls other redox-dependent systems. The response regulator RegA is phosphorylated under low oxygen tension and activates the puf and puc operons, which encode pigment binding proteins, by binding to their promoter regions. Data from a yeast two-hybrid analysis as well as an in vitroanalysis indicate that RegA interacts with the NtrX protein, the response regulator of the NtrY/NtrX two-component system which is believed to be involved in regulation of nitrogen fixation genes. Our further analysis revealed that NtrX is indeed involved in the regulation of the puf and puc operons. Furthermore, we showed that an altered NtrX protein, which is predicted to adopt the conformation of phosphorylated NtrX protein, binds within the puf promoter region close to the RegA binding sites. We conclude that a direct interaction of two response regulators connects the regulatory systems for redox control and nitrogen control.  相似文献   

19.
Bacterial cells possess a signal transduction system that differs from those described in higher organisms, including human cells. These so-called two-component signal transduction systems (TCSs) consist of a sensor (histidine kinase, HK) and a response regulator, and are involved in cellular functions, such as virulence, drug resistance, biofilm formation, cell wall synthesis, cell division. They are conserved in bacteria across all species. Although TCSs are often studied and characterized individually, they are assumed to interact with each other and form signal transduction networks within the cell. In this review, I focus on the formation of TCS networks via connectors. I also explore the possibility of using TCS inhibitors, especially HK inhibitors, as alternative antimicrobial agents.  相似文献   

20.
Bacteria live in environments with dynamic changes. To sense and respond to different external stimuli, bacteria make use of various sensor-response circuits, called two-component systems (TCSs). A TCS comprises a histidine protein kinase (HK) sensing environmental stimuli and a response regulator protein (RR) regulating downstream genes. The two components are coupled via a phosphorylation control mechanism. In a recent study, we adopted an optogenetics approach to re-engineer the sensor HKs in Escherichia coli as a light-sensing fusion protein. We constructed a light-controllable HK by replacing the original signal-specific sensing domain of HK with the light-sensing domain of Cph1 from Cyanobacteria Synechocystis, so that HK can be investigated by red light. Here, we extended the study to other 16 HK-RR TCSs and constructed a library of light-responsible HK-Cph1 chimeras. By taking the NarX-NarL system as an example, we demonstrated the light responsiveness of the constructed chimera and investigated the frequency response of the NarX-NarL system. The constructed library serves as a toolkit for future TCS study using optogenetics approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号