首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hong SG  Jeong W  Jung HS 《Mycologia》2002,94(5):823-833
There has been a systematic need to seek adequate phylogenetic markers that can be applied in phylogenetic analyses of fungal taxa at various levels. The mitochondrial small subunit ribosomal DNA (mt SSU rDNA) is generally considered to be one of the molecules that are appropriate for phylogenetic analyses at a family level. In order to obtain universal primers for polypores of Hymenomycetes, mt SSU rRNA genes were cloned from Bjerkandera adusta, Ganoderma lucidum, Phlebiopsis gigantea, and Phellinus laevigatus and their sequences were determined. Based on the conserved sequences of cloned genes from polypores and Agrocybe aegerita, PCR primers were designed for amplification and sequencing of mt SSU rDNAs. New primers allowed effective amplification and sequencing of almost full-sized genes from representative species of polypores and related species. Phylogenetic relationships were resolved quite efficiently by mt SSU rDNA sequences, and they proved to be more useful in phylogenetic reconstruction of Ganoderma than nuclear internal transcribed spacer (ITS) rDNA sequences.  相似文献   

2.
Sequences in public databases may contain a number of sequencing errors. A double binomial model describing the distribution of indel-excluded similarity coefficients (S) among repeatedly sequenced 16S rRNA was previously developed and it produced a confidence interval of S useful for testing sequence identity among sequences of 400-bp length. We characterized patterns in sequencing errors found in nearly complete 16S rRNA sequences of Vibrionaceae as highly variable in reported sequence length and containing a small number of indels. To accommodate these characteristics, a simple binomial model for distribution of the similarity coefficient (H) that included indels was derived from the double binomial model for S. The model showed good fit to empirical data. By using either a pre-determined or bootstrapping estimated standard probability of base matching, we were able to use the exact binomial test to determine the relative level of sequencing error for a given pair of duplicated sequences. A limitation of the method is the requirement that duplicated sequences for the same template sequence be paired, but this can be overcome by using only conserved regions of 16S rRNA sequences and pairing a given sequence with its highest scoring BLAST search hit from the nr database of GenBank.  相似文献   

3.
Characterisation of microsporidian species and differentiation among genetic variants of the same species has typically relied on ribosomal RNA (rRNA) gene sequences. We characterised the entire rRNA gene of a microsporidium from 11 isolates representing eight different European bumblebee (Bombus) species. We demonstrate that the microsporidium Nosema bombi infected all hosts that originated from a wide geographic area. A total of 16 variable sites (all single nucleotid polymorphisms (SNPs)) was detected in the small subunit (SSU) rRNA gene and 42 (39 SNPs and 3 indels) in the large subunit (LSU) rRNA sequence. Direct sequencing of PCR-amplified DNA products of the internal transcribed spacer (ITS) region revealed identical sequences in all isolates. In contrast, ITS fragment length determined by PAGE and sequencing of cloned amplicons gave better resolution of sequences and revealed multiple SNPs across isolates and two fragment sizes in each isolate (six short and seven long amplicon variants). Genetic variants were not unique to individual host species. Moreover, two or more sequence variants were obtained from individual bumblebee hosts, suggesting the existence of multiple, variable copies of rRNA in the same microsporidium, and contrary to that expected for a class of multi-gene family under concerted evolution theory. Our data on within-genome rRNA variability call into question the usefulness of rRNA sequences to characterise intraspecific genetic variants in the Microsporidia and other groups of unicellular organisms.  相似文献   

4.
Evolutionary trees were constructed, by distance methods, from an alignment of 225 complete large subunit (LSU) rRNA sequences, representing Eucarya, Archaea, Bacteria, plastids, and mitochondria. A comparison was made with trees based on sets of small subunit (SSU) rRNA sequences. Trees constructed on the set of 172 species and organelles for which the sequences of both molecules are known had a very similar topology, at least with respect to the divergence order of large taxa such as the eukaryotic kingdoms and the bacterial divisions. However, since there are more than ten times as many SSU as LSU rRNA sequences, it is possible to select many SSU rRNA sequence sets of equivalent size but different species composition. The topologies of these trees showed considerable differences according to the particular species set selected.The effect of the dataset and of different distance correction methods on tree topology was tested for both LSU and SSU rRNA by repetitive random sampling of a single species from each large taxon. The impact of the species set on the topology of the resulting consensus trees is much lower using LSU than using SSU rRNA. This might imply that LSU rRNA is a better molecule for studying wide-range relationships. The mitochondria behave clearly as a monophyletic group, clustering with the Proteobacteria. Gram-positive bacteria appear as two distinct groups, which are found clustered together in very few cases. Archaea behave as if monophyletic in most cases, but with a low confidence.Abbreviations LSU rRNA large subunit ribosomal RNA - SSU rRNA small subunit ribosomal RNA - JC Jukes and Cantor - JN Jin and Nei Correspondence to: R. De Wachter  相似文献   

5.
During seasonal epizootics of neurologic disease and mass mortality in the summers of 1992, 1993 and 1994 on a sea-farm in Ireland, Atlantic salmon Salmo salar smolts suffered from encephalitis associated with infection by a neurotropic parasite. Based on ultrastructural studies, this neurotropic parasite was identified as an intercellular presporogonic multicellular developmental stage of a histozoic myxosporean, possibly a Myxobolus species. In order to generate sequence data for phylogenetic comparisons to substantiate the present morphological identification of this myxosporean in the absence of detectable sporogony, polymerase chain reaction (PCR), Southern blot hybridization, dideoxynucleotide chain-termination DNA sequencing, and in situ hybridization (ISH) were used in concert to characterize segments of the small subunit ribosomal RNA (SSU rRNA) gene. Oligonucleotide primers were created from sequences of the SSU rRNA gene of M. cerebralis and were employed in PCR experiments using DNA extracted from formalin-fixed paraffin-embedded tissue sections of brains from Atlantic salmon smolts in which the myxosporean had been detected by light microscopy. Five segments of the SSU rRNA gene of the myxosporean, ranging in length from 187 to 287 base pairs, were amplified, detected by hybridization with sequence-specific probes, and sequenced. Consensus sequences from these segments were aligned to create a partial sequence of the SSU rRNA gene of the myxosporean. Assessments of sequence identity were made between this partial sequence and sequences of SSU rRNA genes from 7 myxosporeans, including Ceratomyxa shasta, Henneguya doori, M. arcticus, M. cerebralis, M. insidiosus, M. neurobius, and M. squamalis. The partial SSU rRNA gene sequence from the myxosporean had more sequence identity with SSU rRNA gene sequences from neurotropic and myotropic species of Myxobolus than to those from epitheliotropic species of Myxobolus or Henneguya, or the enterotropic species of Ceratomyxa, and was identical to regions of the SSU rRNA gene of M. cerebralis. Digoxigenin-labeled oligonucleotide DNA probes complementary to multiple segments of the SSU rRNA gene of M. cerebralis hybridized with DNA of the parasite in histologic sections of brain in ISH experiments, demonstrating definitively that the segments of genome amplified were from the organisms identified by histology and ultrastructural analysis. Based on sequence data derived entirely from genetic material of extrasporogonic stages, the SSU rDNA sequence identity discovered in this study supports the hypothesis that the myxosporean associated with encephalitis of farmed Atlantic salmon smolts is a neurotropic species of the genus Myxobolus, with sequences identical to those of M. cerebralis.  相似文献   

6.
The small subunit ribosomal RNA (SSU rRNA) encoding genes from reference strains of Aeromonas salmonicida subsp. smithia and Haemophilus piscium were amplified by polymerase chain reaction and cloned into Escherichia coli cells. Almost the entire SSU rRNA gene sequence (1505 nucleotides) from both organisms was determined. These DNA sequences were compared with those previously described from A. salmonicida subsp. salmonicida, subsp. achromogenes and subsp. masoucida. This genetic analysis revealed that A. salmonicida subsp. smithia and H. piscium showed 99.4 and 99.6% SSU rRNA gene sequence identity, respectively, with A. salmonicida subsp. salmonicida.  相似文献   

7.
We show here that in the mitochondria of Tetrahymena pyriformis, the small subunit (SSU) rRNA is discontinuous, being comprised of two separate components which we term "alpha" (a novel low molecular weight RNA, approximately equal to 200 nucleotides long) and "beta" (a previously described 14 S RNA). The SSU alpha rRNA has been sequenced in its entirety; it represents the immediate 5'-terminal domain of conventional SSU rRNA. The sequences at the ends of the SSU beta rRNA have also been determined; they show that this molecule corresponds to the 3'-terminal 7/8 of conventional SSU rRNA. A 2.5-kilobase pair XbaI restriction fragment of T. pyriformis mitochondrial DNA which contains the SSU alpha and SSU beta rRNA genes was cloned and its complete nucleotide sequence was determined. This revealed that the genes encoding the two segments of SSU rRNA are separated by a 54-base pair (A + T)-rich spacer. The alpha and beta sequences can be fitted to a generalized secondary structure model for eubacterial 16 S rRNA, with the two RNA species associating through long range interactions to form base-paired regions characteristic of SSU rRNA. In this model, the spacer is situated in a region of pronounced primary and secondary structural variation among SSU rRNAs. The significance of these findings with respect to rRNA biosynthesis and processing and the possible evolutionary relationship between spacers and variable regions in rRNA genes is discussed.  相似文献   

8.
The small ribosomal subunit contains 16S rRNA in prokaryotes and 18S rRNA in eukaryotes. Even though it has been known that some small ribosomal sequences are conserved in 16S rRNA and 18S rRNA molecules, they have been used separately for taxonomic and phylogenetic studies. Here, we report the existence of two highly conserved ribosomal sequences in all organisms that allow the amplification of a zone containing approximately 495 bp in prokaryotes and 508 bp in eukaryotes which we have named the "Universal Amplified Ribosomal Region" (UARR). Amplification and sequencing of this zone is possible using the same two universal primers (U1F and U1R) designed on the basis of two highly conserved ribosomal sequences. The UARR encompasses the V6, V7 and V8 domains from SSU rRNA in both prokaryotes and eukaryotes. The internal sequence of this zone in prokaryotes and eukaryotes is variable and the differences become less marked on descent from phyla to species. Nevertheless, UARR sequence allows species from the same genus to be differentiated. Thus, by UARR sequence analysis the construction of universal phylogenetic trees is possible, including species of prokaryotic and eukaryotic microorganisms together. Single isolates of prokaryotic and eukaryotic microorganisms from different sources can be identified by amplification and sequencing of UARR using the same pair of primers and the same PCR and sequencing conditions.  相似文献   

9.
The genus Euduboscquella is one of a few described genera within the syndinean dinoflagellates, an enigmatic lineage with abundant diversity in marine environmental clone libraries based on small subunit (SSU) rRNA. The region composed of the SSU through to the partial large subunit (LSU) rRNA was determined from 40 individual tintinnid ciliate loricae infected with Euduboscquella sampled from eight surface water sites in the Northern Hemisphere, producing seven distinct SSU sequences. The corresponding host SSU rRNA region was also amplified from eight host species. The SSU tree of Euduboscquella and syndinean group I sequences from environmental clones had seven well-supported clades and one poorly supported clade across data sets from 57 to 692 total sequences. The genus Euduboscquella consistently formed a supported monophyletic clade within a single subclade of group I sequences. For most parasites with identical SSU sequences, the more variable internal transcribed spacer (ITS) to LSU rRNA regions were polymorphic at 3 to 10 sites. However, in E. cachoni there was variation between ITS to LSU copies at up to 20 sites within an individual, while in a parasite of Tintinnopsis spp., variation between different individuals ranged up to 19 polymorphic sites. However, applying the compensatory base change model to the ITS2 sequences suggested no compensatory changes within or between individuals with the same SSU sequence, while one to four compensatory changes between individuals with similar but not identical SSU sequences were found. Comparisons between host and parasite phylogenies do not suggest a simple pattern of host or parasite specificity.  相似文献   

10.
《Gene》1997,184(1):55-63
Due to their structural complexity and their evolutionary dimension, rRNAs are the most investigated nucleic acids in prokaryotes, eukaryotes and organelles. However, no complete sequence of a mitochondrial small subunit (SSU) rRNA was available in the basidiomycotina subdivision. The mitochondrial gene encoding the SSU rRNA of the cultivated basidiomycete Agrocybe aegerita was cloned and its complete nucleotide sequence achieved; the 5′- and 3′-ends were localized by nuclease S1 mapping, leading to a size of 3277 nt. The secondary structure of the SSU rRNA (1906 nt in size) possessed all the helices and loops of the prokaryotic model; a unique modification was found in a conserved nucleotide predicted by the model: the nt 487 was A instead of C. The same modification, has been found in all the partial basidiomycete mitochondrial sequences available in databases. The Agrocybe aegerita SSU rRNA was characterized by large and unusual extensions leading to additional helices in the variable domains V4, V6 and V9, which were the longest of the known prokaryotic or mitochondrial SSU rRNAs. Nucleotide sequence analysis indicated a 1371-bp intron, belonging to subgroup-IC2, located in a conserved loop in the 3′-part of the SSU rRNA. This intron, which is the second example reported in a fungal mitochondrial SSU rDNA, encoded a putative protein (407 aa) sharing homologies with endonucleases involved in group-I intron mobility. This report constitutes the first complete mitochondrial SSU rRNA sequence and secondary structure of any member of the basidiomycotina subdivision.  相似文献   

11.
Protists are key players in microbial communities, yet our understanding of their role in ecosystem functioning is seriously impeded by difficulties in identification of protistan species and their quantification. Current microscopy-based methods used for determining the abundance of protists are tedious and often show a low taxonomic resolution. Recent development of next-generation sequencing technologies offered a very powerful tool for studying the richness of protistan communities. Still, the relationship between abundance of species and number of sequences remains subjected to various technical and biological biases. Here, we test the impact of some of these biological biases on sequence abundance of SSU rRNA gene in foraminifera. First, we quantified the rDNA copy number and rRNA expression level of three species of foraminifera by qPCR. Then, we prepared five mock communities with these species, two in equal proportions and three with one species ten times more abundant. The libraries of rDNA and cDNA of the mock communities were constructed, Sanger sequenced and the sequence abundance was calculated. The initial species proportions were compared to the raw sequence proportions as well as to the sequence abundance normalized by rDNA copy number and rRNA expression level per species. Our results showed that without normalization, all sequence data differed significantly from the initial proportions. After normalization, the congruence between the number of sequences and number of specimens was much better. We conclude that without normalization, species abundance determination based on sequence data was not possible because of the effect of biological biases. Nevertheless, by taking into account the variation of rDNA copy number and rRNA expression level we were able to infer species abundance, suggesting that our approach can be successful in controlled conditions.  相似文献   

12.
Sequencing 16S rRNA genes (SSU) cloned from Aeromonas strains revealed that strains contained up to six copies differing by < or = 1.5%. The SSU copies from Aeromonas veronii LMG13695 clustered with sequences from four Aeromonas species. These results demonstrate intragenomic heterogeneity of SSU and suggest caution when using SSU to identify aeromonads.  相似文献   

13.
Although the small-subunit ribosomal RNA (SSU rRNA) gene is widely used in the molecular systematics, few large-subunit (LSU) rRNA gene sequences are known from protostome animals, and the value of the LSU gene for invertebrate systematics has not been explored. The goal of this study is to test whether combined LSU and SSU rRNA gene sequences support the division of protostomes into Ecdysozoa (molting forms) and Lophotrochozoa, as was proposed by Aguinaldo et al. (1997) (Nature 387:489) based on SSU rRNA sequences alone. Nearly complete LSU gene sequences were obtained, and combined LSU + SSU sequences were assembled, for 15 distantly related protostome taxa plus five deuterostome outgroups. When the aligned LSU + SSU sequences were analyzed by tree-building methods (minimum evolution analysis of LogDet-transformed distances, maximum likelihood, and maximum parsimony) and by spectral analysis of LogDet distances, both Ecdysozoa and Lophotrochozoa were indeed strongly supported (e.g., bootstrap values >90%), with higher support than from the SSU sequences alone. Furthermore, with the LogDet-based methods, the LSU + SSU sequences resolved some accepted subgroups within Ecdysozoa and Lophotrochozoa (e.g., the polychaete sequence grouped with the echiuran, and the annelid sequences grouped with the mollusc and lophophorates)-subgroups that SSU-based studies do not reveal. Also, the mollusc sequence grouped with the sequences from lophophorates (brachiopod and phoronid). Like SSU sequences, our LSU + SSU sequences contradict older hypotheses that grouped annelids with arthropods as Articulata, that said flatworms and nematodes were basal bilateralians, and considered lophophorates, nemerteans, and chaetognaths to be deuterostomes. The position of chaetognaths within protostomes remains uncertain: our chaetognath sequence associated with that of an onychophoran, but this was unstable and probably artifactual. Finally, the benefits of combining LSU with SSU sequences for phylogenetic analyses are discussed: LSU adds signal, it can be used at lower taxonomic levels, and its core region is easy to align across distant taxa-but its base frequencies tend to be nonstationary across such taxa. We conclude that molecular systematists should use combined LSU + SSU rRNA genes rather than SSU alone.  相似文献   

14.
Massively parallel pyrosequencing of hypervariable regions from small subunit ribosomal RNA (SSU rRNA) genes can sample a microbial community two or three orders of magnitude more deeply per dollar and per hour than capillary sequencing of full-length SSU rRNA. As with full-length rRNA surveys, each sequence read is a tag surrogate for a single microbe. However, rather than assigning taxonomy by creating gene trees de novo that include all experimental sequences and certain reference taxa, we compare the hypervariable region tags to an extensive database of rRNA sequences and assign taxonomy based on the best match in a Global Alignment for Sequence Taxonomy (GAST) process. The resulting taxonomic census provides information on both composition and diversity of the microbial community. To determine the effectiveness of using only hypervariable region tags for assessing microbial community membership, we compared the taxonomy assigned to the V3 and V6 hypervariable regions with the taxonomy assigned to full-length SSU rRNA sequences isolated from both the human gut and a deep-sea hydrothermal vent. The hypervariable region tags and full-length rRNA sequences provided equivalent taxonomy and measures of relative abundance of microbial communities, even for tags up to 15% divergent from their nearest reference match. The greater sampling depth per dollar afforded by massively parallel pyrosequencing reveals many more members of the “rare biosphere” than does capillary sequencing of the full-length gene. In addition, tag sequencing eliminates cloning bias and the sequences are short enough to be completely sequenced in a single read, maximizing the number of organisms sampled in a run while minimizing chimera formation. This technique allows the cost-effective exploration of changes in microbial community structure, including the rare biosphere, over space and time and can be applied immediately to initiatives, such as the Human Microbiome Project.  相似文献   

15.
Eighteen Naegleria strains were isolated from organs of freshwater fishes belonging to 5 species. Morphometric study allowed the separation of the Naegleria strains from the non-vahlkampfiid amoeboflagellates, but was inadequate for species determination. Six strains, representatives of groups that had a slightly different cyst size, were selected and corresponding derived clones were subjected to sequence analysis and riboprinting restriction fragment length polymorphism (RFLP)-PCR analysis of the small subunit (SSU) rRNA genes. One strain isolated from the brain of a fish with systemic infection was characterised by an intronless 2 kb long SSU rRNA gene and was identified as N. australiensis. Another 5 strains had a 1.3 kb long group I intron in their SSU rRNA gene and, based on the SSU rRNA sequences and riboprints, RFLP-PCR patterns appeared in phylogenetic trees to be closely related to Naegleria clarki.  相似文献   

16.
ABSTRACT: The presence or absence of genetic recombination has often been used as one of the criteria for Cryptosporidium species designation and population structure delineation. During a recent study of cryptosporidiosis in reptiles that were housed in the same room, 4 lizards were found to have concurrent infections of C. serpentis (a gastric parasite) and C. saurophilum (an intestinal parasite), and 6 snakes were concurrently infected with C. serpentis, C. sattrophitmm and a new Cryptosporidium as indicated by PCR-RFLP analysis of the SSU rRNA gene. DNA sequence analysis of cloned PCR products confirmed the diagnosis of mixed infections. Surprisingly, it appeared that 11 of the 22 clones (8 and 14 clones from a lizard and a snake, respectively) had chimeric sequences of two Cryptosporidium spp. BootScan analysis indicated the existence of recombinants among the cloned sequences and detection of the informative sites confirmed the BootScan results. Because the probability for genetic recombination between gastric and intestinal parasites is small, these hybrid sequences were likely results of PCR artifacts due to the presence of multiple templates. This was confirmed by PCR-sequencing analysis of single-copy templates using diluted DNA samples. Direct sequencing of 69 PCR products from 100-to 1.000-fold diluted DNAs from the same snake and lizard produced only sequences of C. serpentis, C. saurophilum and the unnamed Cryntosnoridium. , sp. Thus, care should be taken to eliminate PCR artifacts when determining the presence of genetic recombination or interpreting results of population genetic studies.  相似文献   

17.
Most molecular ecological studies of arbuscular mycorrhizal fungi (AMF) have been based on the rRNA gene sequences. However, information about intraspecific nucleotide variation is still limited in these fungi. In this study, we calculated the inter- and intrasporal nucleotide variation of Diversispora sp. EE1 using 78 cloned sequences from four spores within a ca 4960 bp fragment of the nuclear ribosomal operon spanning the near full length small ribosomal subunit (SSU) rRNA gene, the full internal transcribed spacer (ITS: ITS1-5.8S-ITS2) and ca 2740 bp of the large ribosomal subunit (LSU) rRNA gene. Data for each marker region (SSU, ITS and LSU) originated from the very same spores. Sequence variation resulting from point mutations and small indels was recorded in all regions. Highest sequence variation was observed in the ITS region at both the inter- and intrasporal levels. The ITS1 component was more variable than ITS2, whilst the 5.8S gene was the least variable component of the ITS region. Evolutionary divergence of gene copies between spores was intermediate for the LSU and lowest for the SSU. The SSU and the LSU genes had relatively similar evolutionary divergence per spore. Sequence variant richness was not exhaustive for any of the marker regions, indicating that multiple sequences per spore from multiple spores are needed when characterizing a species. This study provides reference sequences for ecological studies, permitting identification of AMF using any of the ribosomal regions or primer systems.  相似文献   

18.
Detection of chimeric artifacts formed when PCR is used to retrieve naturally occurring small-subunit (SSU) rRNA sequences may rely on demonstrating that different sequence domains have different phylogenetic affiliations. We evaluated the CHECK_CHIMERA method of the Ribosomal Database Project and another method which we developed, both based on determining nearest neighbors of different sequence domains, for their ability to discern artificially generated SSU rRNA chimeras from authentic Ribosomal Database Project sequences. The reliability of both methods decreases when the parental sequences which contribute to chimera formation are more than 82 to 84% similar. Detection is also complicated by the occurrence of authentic SSU rRNA sequences that behave like chimeras. We developed a naive statistical test based on CHECK_CHIMERA output and used it to evaluate previously reported SSU rRNA chimeras. Application of this test also suggests that chimeras might be formed by retrieving SSU rRNAs as cDNA. The amount of uncertainty associated with nearest-neighbor analyses indicates that such tests alone are insufficient and that better methods are needed.  相似文献   

19.
We describe a rapid oligonucleotide probe design strategy based on subtractive hybridization which yields probes for 16S rRNA or rRNA genes of individual members of microbial communities that are specific within the context of those communities. This strategy circumvents the need to sequence many similar or identical clones of dominant members of a community. Radioactively labeled subfragments of a cloned 16S rRNA gene sequence for which a probe is required (target) were hybridized with biotinylated total 16S ribosomal DNA (rDNA) amplified from the microbial community, and the hybrids formed were subsequently discarded. The remaining enriched fragments were used to screen a library consisting of cloned subfragments of the target sequence by colony hybridization in order to identify the variable regions of the 16S rRNA gene with the required specificity. The sequencing of random clones in one 16S rDNA library demonstrated that only those clones with 100% sequence identity with the probe fragment were detected by it. Moreover, sequencing of other, randomly selected, probe-positive clones revealed 100% sequence identity with the probe. Probes developed in this way tended to correspond to more variable regions of the 16S rRNA if the target sequences were similar to the sequences of other clones in the library and to less variable regions if the target sequences were phylogenetically isolated within the clone library. Although the absolute specificity of the latter probes, as assessed by comparison with available database sequences, was lower than the absolute specificity of the probes from the more variable regions, they were specific within the context of the environmental samples from which they were derived.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号