首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 879 毫秒
1.
Ammonia is a neurotoxin that predominantly affects astrocytes. Disturbed mitochondrial function and oxidative stress, factors implicated in the induction of the mitochondrial permeability transition (MPT), appear to be involved in the mechanism of ammonia neurotoxicity. We have recently shown that ammonia induces the MPT in cultured astrocytes. To elucidate the mechanisms of the MPT, we examined the role of oxidative stress and glutamine, a byproduct of ammonia metabolism. The ammonia-induced MPT was blocked by antioxidants, suggesting a causal role of oxidative stress. Direct application of glutamine (4.5-7.0 mM) to cultured astrocytes increased free radical production and induced the MPT. Treatment of astrocytes with the mitochondrial glutaminase inhibitor, 6-diazo-5-oxo-L-norleucine, completely blocked free radical formation and the MPT, suggesting that high ammonia concentrations in mitochondria resulting from glutamine hydrolysis may be responsible for the effects of glutamine. These studies suggest that oxidative stress and glutamine play major roles in the induction of the MPT associated with ammonia neurotoxicity.  相似文献   

2.
Ammonia-induced astrocyte swelling in primary culture   总被引:4,自引:0,他引:4  
The effect of ammonia on water space of astrocytes in culture was determined as a means of studying the neurotoxicity of ammonia in fulminant hepatic failure (FHF). Treatment of primary astrocyte cultures obtained from neonatal rat cortices with 10 mM NH4Cl for 4 days resulted in a 29% increase in astrocytic water space, as measured by an isotopic method utilizing 3-O-methyl-[3H]-glucose. this effect was time- and dose-dependent. The ammonia-induced swelling was reversible as the water space in cultures treated with 10 mH NH4Cl for 3 days, and then returned to normal culture media for 1 day, was similar to control cultures. These findings suggest that elevated levels of ammonia lead to astrocyte swelling and may contribute to the brain edema in FHF.Special issue dedicated to Dr. Santiago Grisolia  相似文献   

3.
Cerebral edema with a rise in intracranial pressure is the hallmark of fulminant hepatic failure (FHF) and acute hyperammonemic (HA) states and is characterized by a poor survival rate. Astrocytes are the cells in brain which are swollen in these conditions. Several hypotheses have been proposed to explain the mechanism of cerebral edema in FHF and treatment strategies have evolved based on these putative mechanisms. Treatment with a mixture of ornithine and aspartate has been proven to be clinically beneficial as it reduces edema and improves the neurological status. It has been suggested that these two amino acids generate the glutamate required for the synthesis of glutamine and that they also enhance urea synthesis in surviving hepatocytes in FHF and HA. Presently, we report that of these two amino acids, only aspartate is effective in suppressing ammonia-induced swelling in primary cultures of astrocytes, while ornithine is ineffective. These results are discussed in relation to the metabolism of aspartate and ornithine in astrocytes, with an emphasis on glutamine synthesis and the malate-aspartate shuttle (MAS). We propose that the ability of aspartate to generate glutamate in the cytosol for glutamine synthesis and oxaloacetate in mitochondria to support the citric acid cycle play a role in its ability to reduce ammonia-induced swelling in astrocytes.  相似文献   

4.
Brain edema and the consequent increase in intracranial pressure and brain herniation are major complications of acute liver failure (fulminant hepatic failure) and a major cause of death in this condition. Ammonia has been strongly implicated as an important factor, and astrocyte swelling appears to be primarily responsible for the edema. Ammonia is known to cause cell swelling in cultured astrocytes, although the means by which this occurs has not been fully elucidated. A disturbance in one or more of these systems may result in loss of ion homeostasis and cell swelling. In particular, activation of the Na-K-Cl cotransporter (NKCC1) has been shown to be involved in cell swelling in several neurological disorders. We therefore examined the effect of ammonia on NKCC activity and its potential role in the swelling of astrocytes. Cultured astrocytes were exposed to ammonia (NH(4)Cl; 5 mm), and NKCC activity was measured. Ammonia increased NKCC activity at 24 h. Inhibition of this activity by bumetanide diminished ammonia-induced astrocyte swelling. Ammonia also increased total as well as phosphorylated NKCC1. Treatment with cyclohexamide, a potent inhibitor of protein synthesis, diminished NKCC1 protein expression and NKCC activity. Since ammonia is known to induce oxidative/nitrosative stress, and antioxidants and nitric-oxide synthase inhibition diminish astrocyte swelling, we also examined whether ammonia caused oxidation and/or nitration of NKCC1. Cultures exposed to ammonia increased the state of oxidation and nitration of NKCC1, whereas the antioxidants N-nitro-l-arginine methyl ester and uric acid all significantly diminished NKCC activity. These agents also reduced phosphorylated NKCC1 expression. These results suggest that activation of NKCC1 is an important factor in the mediation of astrocyte swelling by ammonia and that such activation appears to be mediated by NKCC1 abundance as well as by its oxidation/nitration and phosphorylation.  相似文献   

5.
6.
Ammonia is a toxin that has been strongly implicated in the pathogenesis of hepatic encephalopathy (HE), and astrocytes appear to be the principal target of ammonia toxicity. Glutamine, a byproduct of ammonia metabolism, has been implicated in some of the deleterious effects of ammonia on the CNS. We have recently shown that ammonia induces the mitochondrial permeability transition (MPT) in cultured astrocytes, but not in neurons. We therefore determined whether glutamine is also capable of inducing the MPT in cultured astrocytes. Astrocytes were treated with glutamine (4.5 mM) for various time periods and the MPT was assessed by changes in 2-deoxyglucose (2-DG) mitochondrial permeability, calcein fluorescence assay, and by changes in cyclosporin A (CsA)-sensitive inner mitochondrial membrane potential (deltapsi(m)) using the potentiometric dye, JC-1. Astrocytes treated with glutamine significantly increased 2-DG permeability (120%, P<0.01), decreased mitochondrial calcein fluorescence, and concomitantly dissipated the deltapsi(m). All of these effects were blocked by CsA. These data indicate that glutamine induces the MPT in cultured astrocytes. The induction of the MPT by glutamine in astrocytes, and the subsequent development of mitochondrial dysfunction, may partially explain the deleterious affects of glutamine on the CNS in the setting of hyperammonemia.  相似文献   

7.
Increased ammonia accumulation in the brain due to liver dysfunction is a major contributor to the pathogenesis of hepatic encephalopathy (HE). Fatal outcome of rapidly progressing (acute) HE is mainly related to cytotoxic brain edema associated with astrocytic swelling. An increase of brain ammonia in experimental animals or treatment of cultured astrocytes with ammonia generates reactive oxygen and nitrogen species in the target tissues, leading to oxidative/nitrosative stress (ONS). In cultured astrocytes, ammonia-induced ONS is invariably associated with the increase of the astrocytic cell volume. Interrelated mechanisms underlying this response include increased nitric oxide (NO) synthesis which is partly coupled to the activation of NMDA receptors and increased generation of reactive oxygen species by NADPH oxidase. ONS and astrocytic swelling are further augmented by excessive synthesis of glutamine (Gln) which impairs mitochondrial function following its accumulation in there and degradation back to ammonia (“the Trojan horse” hypothesis). Ammonia also induces ONS in other cell types of the CNS: neurons, microglia and the brain capillary endothelial cells (BCEC). ONS in microglia contributes to the central inflammatory response, while its metabolic and pathophysiological consequences in the BCEC evolve to the vasogenic brain edema associated with HE. Ammonia-induced ONS results in the oxidation of mRNA and nitration/nitrosylation of proteins which impact intracellular metabolism and potentiate the neurotoxic effects. Simultaneously, ammonia facilitates the antioxidant response of the brain, by activating astrocytic transport and export of glutathione, in this way increasing the availability of precursors of neuronal glutathione synthesis.  相似文献   

8.
This study investigates how the metabolic activity and de novo synthesis of amino acids from glucose correlate with changes in intracellular organic osmolytes involved in astrocytic volume regulation during hyperammonemia and hyponatremia. Multinuclear (1H-, 31P-, 13C-) NMR spectra were recorded to quantify water-soluble metabolites, the cellular energy state, as well as the incorporation of [1-(13)C]glucose into amino acids of primary astrocyte cultures. Myo-inositol levels were strongly decreased already at 3h after treatment with NH4Cl; other intracellular osmolytes, such as hypotaurine and choline-containing compounds were also decreased, along with a concomitant increase of both the total concentration and the amount of newly synthesized glutamine, alanine, and glutathione. During ammonia stress, the decrease of organic osmolytes compensated in part for increased intracellular osmolarity caused by amino acid synthesis. Hypotonic conditions alone also lowered the content of organic osmolytes including cellular amino acids, but much less than in hyperammonemia. This was due to impaired mitochondrial metabolic activity via the Krebs cycle, which also enhanced ammonia-induced ATP decrease. However, the changes in the sum of organic osmolytes were not significantly different after ammonia-treatment in hypoosmotic compared to anisoosmotic media, suggesting that the decrease of cellular organic osmolytes may not adequately compensate for the increased intracellular osmolarity caused by amino acids under hyponatremia. Therefore, the ammonia-induced release of osmolytes is an early process in response to increased intracellular osmolarity evoked by increased glutamine and alanine as a consequence of stimulated metabolic activity. The imperfect correlation of changes in astrocytic glutamine, other organic osmolytes, and the cellular energy state under hyperammonemic stress in isoosmotic and hypoosmotic media, however, point to additional mechanisms contributing to astrocyte dysfunction in hyperammonemic states, which are independent from glutamine formation.  相似文献   

9.
Ammonia is a neurotoxin that has been strongly implicated in the pathogenesis of hepatic encephalopathy (HE) and other neurological disorders, and astrocytes are thought to be the principal target of ammonia toxicity. While the precise mechanisms of ammonia neurotoxicity remain to be more clearly defined, altered bioenergetics and oxidative stress appear to be critical factors in its pathogenesis. It has recently been demonstrated that pathophysiological concentrations of ammonia induce the mitochondrial permeability transition (MPT) in cultured astrocytes, a process associated with mitochondrial dysfunction, and frequently caused by oxidative stress. This study investigated the potential role of oxidative stress in the induction of the MPT by ammonia. Accordingly, the effect of various antioxidants on the induction of the MPT by ammonia in cultured astrocytes was examined. Astrocytes were subjected to NH4Cl (5 mM) treatment for 2 days with or without various antioxidants. The MPT was assessed by quantitative fluorescence imaging for the mitochondrial membrane potential (DeltaPsim), employing the potentiometric dye TMRE; by changes in mitochondrial calcein fluorescence and by 2-deoxyglucose-6-phosphate (2-DG-6-P) changes in mitochondrial permeability. Astrocytes treated with ammonia significantly dissipated the DeltaPsim, which was blocked by the MPT inhibitor, cyclosporin A, caused a decrease in mitochondrial calcein fluorescence and increased 2-DG-6-P permeability into mitochondria. All of these findings are consistent with induction of the MPT. Pretreatment with SOD, catalase, desferroxamine, Vitamin E, PBN and the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), completely blocked the ammonia-induced MPT. These data provide strong evidence that oxidative stress is involved in the induction of the MPT by ammonia, and suggest that oxidative stress and the subsequent induction of the MPT contribute to the pathogenesis of HE and other hyperammonemic disorders.  相似文献   

10.
Ammonia-induced swelling of astrocytes is a primary cause of brain edema associated with acute hepatic encephalopathy. Previous studies have shown that ammonia transiently increases cGMP in brain in vivo and in cultured astrocytes in vitro . We hypothesized that protein kinase G (PKG), an enzyme activated by cGMP and implicated in regulation of cell shape, size, and/or volume in peripheral and CNS cells, may play a role in the ammonia-induced astrocytic volume increase. Treatment of cultured rat cortical astrocytes with 1 or 5 mM NH4Cl (ammonia) for 24 h increased their cell volume by 50% and 80% above control, respectively, as measured by confocal imaging followed by 3D computational analysis. A cGMP analog, 8-(4-chlorophenylthio)-cGMP, increased the cell volume in control cells and potentiated the increase in 1 mM ammonia-treated cells. A soluble guanylate cyclase inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) abrogated, and a PKG inhibitor [8-(4-chlorophenylthio)-cGMP-thioate, Rp-isomer] dose-dependently reduced the cell volume-increasing effect of 5 mM ammonia. The results suggest that (i) PKG may play a permissive role in ammonia-induced astrocytic swelling and (ii) elevation of brain cGMP associated with acute exposure to ammonia in vivo may aggravate the ensuing brain edema.  相似文献   

11.
Hepatic encephalopathy (HE) is the major neurological disorder associated with liver disease. It presents in chronic and acute forms, and astrocytes are the major neural cells involved. While the principal etiological factor in the pathogenesis of HE is increased levels of blood and brain ammonia, glutamine, a byproduct of ammonia metabolism, has also been implicated in its pathogenesis. This article reviews the current status of glutamine in the pathogenesis of HE, particularly its involvement in some of the events triggered by ammonia, including mitochondrial dysfunction, generation of oxidative stress, and alterations in signaling mechanisms, including activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-κB). Mechanisms by which glutamine contributes to astrocyte swelling/brain edema associated with acute liver failure (ALF) will also be described.  相似文献   

12.
The molecular pathogenesis of hepatic encephalopathy   总被引:4,自引:0,他引:4  
Hepatic encephalopathy (HE) incorporates a spectrum of neuropsychiatric abnormalities seen in patients with liver dysfunction with a potential for full reversibility. Distinct syndromes are identified in acute liver failure and cirrhosis. Rapid deterioration in consciousness level and increased intracranial pressure that may result in brain herniation and death are a feature of acute liver failure whereas manifestations of HE in cirrhosis include psychomotor dysfunction, impaired memory, increased reaction time, sensory abnormalities, poor concentration and in severe forms, coma. For over a 100 years ammonia has been considered central to its pathogenesis. In the brain, the astrocyte is the main site for ammonia detoxification, during the conversion of glutamate to glutamine. An increased ammonia level raises the amount of glutamine within astrocytes, causing an osmotic imbalance resulting in cell swelling and ultimately brain oedema. The present review focuses upon the molecular mechanisms involved in the pathogenesis of HE. Therapy of HE is directed primarily at reducing ammonia generation and increasing its detoxification.  相似文献   

13.
Ammonia exerts a multitude of metabolic and non-metabolic effects on brain tissue. In the present communication we have investigated its effect on lactate production rates, pyruvate production rates and pyruvate/lactate ratios in mouse cerebrocortical astrocytes and neurons in primary cultures. No effects were found in neurons. All three parameters were affected by ammonia in astrocytes, but less potently and to a smaller degree in cells that had been treated with dibutyryl cyclic AMP (morphologically differentiated cells) than in untreated cells (morphologically undifferentiated cells). In the differentiated cells ammonia had virtually no effect up to a concentration of 1.0 mM, but at 3.0 mM it increased lactate production and decreased pyruvate/lactate ratio significantly. In the undifferentiated cells ammonia greatly increased lactate accumulation (by 80% at 3.0 mM) and it inhibited pyruvate accumulation (by 40% at 3.0 mM). It thereby reduced the pyruvate/lactate ratio progressively within the entire range 0.1-3.0 mM ammonia. In support of the hypothesis that the ammonia-induced reduction of pyruvate/lactate ratio is secondary to depletion of cellular glutamate by formation of glutamine (and glutathione) and a resulting interruption of the malate-aspartate shuttle (MAS), the addition of glutamate to the incubation medium significantly diminished the ammonia-induced reduction of pyruvate/lactate ratio, whereas it had no effect on the increased lactate production. It is discussed that MAS interruption may have additional consequences in astrocytes.  相似文献   

14.
Acute liver failure (ALF) is characterized neuropathologically by cytotoxic brain edema and biochemically by increased brain ammonia and its detoxification product, glutamine. The osmotic actions of increased glutamine synthesis in astrocytes are considered to be causally related to brain edema and its complications (intracranial hypertension, brain herniation) in ALF. However studies using multinuclear (1)H- and (13)C-NMR spectroscopy demonstrate that neither brain glutamine concentrations per se nor brain glutamine synthesis rates correlate with encephalopathy grade or the presence of brain edema in ALF. An alternative mechanism is now proposed whereby the newly synthesized glutamine is trapped within the astrocyte as a consequence of down-regulation of its high affinity glutamine transporter SNAT5 in ALF. Restricted transfer out of the cell rather than increased synthesis within the cell could potentially explain the cell swelling/brain edema in ALF. Moreover, the restricted transfer of glutamine from the astrocyte to the adjacent glutamatergic nerve terminal (where glutamine serves as immediate precursor for the releasable/transmitter pool of glutamate) could result in decreased excitatory transmission and excessive neuroinhibition that is characteristic of encephalopathy in ALF. Paradoxically, in spite of renewed interest in arterial ammonia as a predictor of raised intracranial pressure and brain herniation in ALF, ammonia-lowering agents aimed at reduction of ammonia production in the gut have so far been shown to be of limited value in the prevention of these cerebral consequences. Mild hypothermia, shown to prevent brain edema and intracranial hypertension in both experimental and human ALF, does so independent of effects on brain glutamine synthesis; whether or not hypothermia restores expression levels of SNAT5 in ALF awaits further studies. While inhibitors of brain glutamine synthesis such as methionine sulfoximine, have been proposed for the prevention of brain edema in ALF, potential adverse effects have so far limited their applicability.  相似文献   

15.
Brain edema is a severe clinical complication in a number of pathologies and is a major cause of increased morbidity and death. The swelling of astrocytes caused by a disruption of water and ion homeostasis, is the primary event contributing to the cytotoxic form of brain edema. Astrocyte cytotoxic swelling ultimately leads to transcapillary fluxes of ions and water into the brain parenchyma. This review focuses on the implication of transporters and channels in cytotoxic astrocyte swelling in hyponatremia, ischemia, trauma and hepatic encephalopathy. Emphasis is put on some salient features of the astrocyte physiology, all related to cell swelling, i.e. predominance of aquaporins, control of K+ homeostasis and ammonia accumulation during the brain ammonia-detoxifying process.  相似文献   

16.
Brain edema and the associated increase in intracranial pressure are major consequences of traumatic brain injury (TBI) that accounts for most early deaths after TBI. We recently showed that acute severe trauma to cultured astrocytes results in cell swelling. We further examined whether trauma induces cell swelling in neurons and microglia. We found that severe trauma also caused cell swelling in cultured neurons, whereas no swelling was observed in microglia. While severe trauma caused cell swelling in both astrocytes and neurons, mild trauma to astrocytes, neurons, and microglia failed to cell swelling. Since extracellular levels of glutamate are increased in brain post-TBI and microglia are known to release cytokine, and direct exposure of astrocytes to these molecules are known to stimulate cell swelling, we examined whether glutamate or cytokines have any additive effect on trauma-induced cell swelling. Exposure of cultured astrocytes to trauma caused cell swelling, and such swelling was potentiated by the exposure of traumatized astrocytes to glutamate and cytokines. Conditioned medium (CM) from traumatized astrocytes had no effect on neuronal swelling post-trauma, while CM from traumatized neurons and microglia potentiated the effect of trauma on astrocyte swelling. Further, trauma significantly increased the Na–K–Cl co-transporter (NKCC) activity in neurons, and that inhibition of NKCC activity diminished the trauma-induced neuronal swelling. Our results indicate that a differential sensitivity to trauma-induced cell swelling exists in neural cells and that neurons and microglia are likely to be involved in the potentiation of the astrocyte swelling post-trauma.  相似文献   

17.
In vitro 1H- and 13C-NMR spectroscopy was used to investigate the effect of ammonia on fatty acid synthesis and composition in cultured astrocytes. Cells were incubated 3 and 24 h with 5 mM ammonia in the presence or absence of the glutamine synthetase inhibitor methionine sulfoximine. An increase of de novo synthesized fatty acids and the glycerol subunit of lipids was observed after 3 h treatment with ammonia (35% and 40% over control, respectively), the initial time point examined. Both parameters further increased significantly to 85% and 60% over control after 24 h ammonia treatment. Three hours incubation with ammonia increased the synthesis of diacylglycerides, while formation of triacylglycerides was decreased (40% over and 15% under control, respectively). The degradation of fatty acids was not affected by ammonia treatment. Furthermore, ammonia caused alterations in the composition of fatty acids, e.g. increased mono- and decreased polyunsaturated fatty acids (85% over and 15% under control concentrations, respectively). The decrease of polyunsaturated fatty acids was even more pronounced in isolated astrocytic mitochondria (39% lower than controls). Our results suggest ammonia-induced abnormalities in astrocytic membranes, which may be related to astrocytic mitochondrial dysfunction in hyperammonemic states. Most of the observed effects of ammonia on fatty acid synthesis and composition were ameliorated when glutamine synthetase was inhibited by methionine sulfoximine, supporting a pathological role of glutamine in ammonia toxicity. This study further emphasizes the importance of investigating the relative contribution of exogenous ammonia, effects of glutamine and of glutamine-derived ammonia on astrocytes and astrocytic mitochondria.  相似文献   

18.
The aim of the present study was to determine whether endogenous amino acids are released from type-1 and type-2 astrocytes following non-N-methyl-D-aspartate (NMDA) receptor activation and whether such release is related to cell swelling. Amino acid levels and release were measured by HPLC in secondary cultures from neonatal rat cortex, highly enriched in type-1 or type-2 astrocytes. The following observations were made. (a) The endogenous level of several amino acids (glutamate, alanine, glutamine, asparagine, taurine, serine, and threonine) was substantially higher in type-1 than in type-2 astrocytes. (b) The spontaneous release of glutamine and taurine was higher in type-1 than in type-2 astrocytes; that of other amino acids was similar. (c) Exposure of type-2 astrocyte cultures to 50 microM kainate or quisqualate doubled the release of glutamate and caused a lower, but significant increase in that of aspartate, glycine, taurine, alanine, serine (only in the case of kainate), and glutamine (only in the case of quisqualate). These effects were reversed by the antagonist CNQX. (d) Exposure of type-1 astrocyte cultures to 50-200 microM kainate or 50 microM quisqualate did not affect endogenous amino acid release, even after treating the cultures with dibutyryl cyclic AMP. (e) Exposure of type-1 or type-2 astrocyte cultures to 50 mM KCl (replacing an equimolar concentration of NaCl) enhanced the release of taurine greater than glutamate greater than aspartate. The effect was somewhat more pronounced in type-2 than in type-1 astrocytes. Veratridine (50 microM) did not cause any increase in amino acid release. (f) The release of amino acids induced by high [K+] appeared to be related to cell swelling, in both type-1 and type-2 astrocytes. Swelling and K(+)-induced release were somewhat higher in type-2 than in type-1 astrocytes. In contrast, neither kainate nor quisqualate caused any appreciable increase in cell volume. It is concluded that non-NMDA receptor agonists stimulate the release of several endogenous amino acids (some of which are neuroactive) from type-2 but not from type-1 astrocytes. The effect does not seem to be related to cell swelling, which causes a different release profile in both type-1 and type-2 astrocytes. The absence of kainate- and quisqualate-evoked release in type-1 astrocytes suggests that the density of non-NMDA receptors in this cell type is very low.  相似文献   

19.
Ammonia toxicity is clinically important and biologically poorly understood. We reported previously that 3 mM ammonia chloride (ammonia), a relevant concentration for hepatic encephalopathy studies, increases production of endogenous ouabain and activity of Na,K-ATPase in astrocytes. In addition, ammonia-induced upregulation of gene expression of α2 isoform of Na,K-ATPase in astrocytes could be inhibited by AG1478, an inhibitor of the EGF receptor (EGFR), and by PP1, an inhibitor of Src, but not by GM6001, an inhibitor of metalloproteinase and shedding of growth factor, suggesting the involvement of endogenous ouabain-induced EGF receptor transactivation. In the present cell culture study, we investigated ammonia effects on phosphorylation of EGF receptor and its intracellular signal pathway towards MAPK/ERK1/2 and PI3K/AKT; interaction between EGF receptor, α1, and α2 isoforms of Na,K-ATPase, Src, ERK1/2, AKT and caveolin-1; and relevance of these signal pathways for ammonia-induced cell swelling, leading to brain edema, an often fatal complication of ammonia toxicity. We found that (i) ammonia increases EGF receptor phosphorylation at EGFR845 and EGFR1068; (ii) ammonia-induced ERK1/2 and AKT phosphorylation depends on the activity of EGF receptor and Src, but not on metalloproteinase; (iii) AKT phosphorylation occurs upstream of ERK1/2 phosphorylation; (iv) ammonia stimulates association between the α1 Na,K-ATPase isoform, Src, EGF receptor, ERK1/2, AKT and caveolin-1; (v) ammonia-induced ROS production might occur later than EGFR transactivation; (vi) both ammonia induced ERK phosphorylation and ROS production can be abolished by canrenone, an inhibitor of ouabain, and (vii) ammonia-induced cell swelling depends on signaling via the Na,K-ATPase/ouabain/Src/EGF receptor/PI3K-AKT/ERK1/2, but in response to 3 mM ammonia it does not appear until after 12 h. Based on literature data it is suggested that the delayed appearance of the ammonia-induced swelling at this concentration reflects required ouabain-induced oxidative damage of the ion and water cotransporter NKCC1. This information may provide new therapeutic targets for treatment of hyperammonic brain disorders.  相似文献   

20.
Ammonia causes astrocyte swelling which is abrogated by methionine sulfoximine (MSO). Since myo-inositol is an important osmolyte, we investigated the effects of ammonia and MSO on myo-inositol flux in cultured astrocytes for periods up to 72 hours. Uptake of myo-inositol was significantly decreased by 26.7 (P < 0.05) and 39.3 (P lt; 0.006) percent after 48 hours of exposure to 5 or 10 mM ammonia, respectively. The maximum rate of uptake was 14.0 ± 0.5 nmol/hour/mg protein which was reduced to 7.45 ± 0.27 and 7.02 ± 0.57 nmoles/hour/mg protein by 5 or 10 mM ammonia, respectively. The Kms by Michaelis-Menten equation for the control, and in the presence of 5, or 10 mM ammonia were 32.5 ± 4.52, 44.4 ± 5.82, and 39.3 ± 7.0 M, respectively. Kms by Hanes-Woolf plot for the control, 5, or 10 mM ammonia were 25, 45, and 40 M, respectively. Treatment of astrocytes with either 5 or 10 mM NH4Cl for 6 hours caused a decrease in myo-inositol content by 66% and 58%, respectively. MSO (3 mM) partially diminished the ammonia-induced inhibition of myo-inositol uptake and decreased myo-inositol content by 31% after 24 hours. Additionally, ammonia increased myo-inositol efflux briefly through the fast efflux component but had little effect on myo-inositol efflux through the slow efflux component of astrocytes exposed to ammonia for up to 72 hours. Predominantly decreased myo-inositol influx coupled with brief efflux through the fast component may represent an adaptive response to diminish the extent of ammonia-induced astrocyte swelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号