首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Campylobacter jejuni strain M1 (laboratory designation 99/308) is a rarely documented case of direct transmission of C. jejuni from chicken to a person, resulting in enteritis. We have sequenced the genome of C. jejuni strain M1, and compared this to 12 other C. jejuni sequenced genomes currently publicly available. Compared to these, M1 is closest to strain 81116. Based on the 13 genome sequences, we have identified the C. jejuni pan-genome, as well as the core genome, the auxiliary genes, and genes unique between strains M1 and 81116. The pan-genome contains 2,427 gene families, whilst the core genome comprised 1,295 gene families, or about two-thirds of the gene content of the average of the sequenced C. jejuni genomes. Various comparison and visualization tools were applied to the 13 C. jejuni genome sequences, including a species pan- and core genome plot, a BLAST Matrix and a BLAST Atlas. Trees based on 16S rRNA sequences and on the total gene families in each genome are presented. The findings are discussed in the background of the proven virulence potential of M1.  相似文献   

2.
Evidence for a Genetically Stable Strain of Campylobacter jejuni   总被引:1,自引:0,他引:1       下载免费PDF全文
The genetic stability of selected epidemiologically linked strains of Campylobacter jejuni during outbreak situations was investigated by using subtyping techniques. Strains isolated from geographically related chicken flock outbreaks in 1998 and from a human outbreak in 1981 were investigated. There was little similarity in the strains obtained from the different chicken flock outbreaks; however, the strains from each of three chicken outbreaks, including strains isolated from various environments, were identical as determined by fla typing, amplified fragment length polymorphism (AFLP) analysis, and pulsed-field gel electrophoresis, which confirmed the genetic stability of these strains during the short time courses of chicken flock outbreaks. The human outbreak samples were compared with strain 81116, which originated from the same outbreak but has since undergone innumerable laboratory passages. Two main AFLP profiles were recognized from this outbreak, which confirmed the serotyping results obtained at the time of the outbreak. The major type isolated from this outbreak (serotype P6:L6) was exemplified by strain 81116. Despite the long existence of strain 81116 as a laboratory strain, the AFLP profile of this strain was identical to the profiles of all the other historical P6:L6 strains from the outbreak, indicating that the genotype has remained stable for almost 20 years. Interestingly, the AFLP profiles of the P6:L6 group of strains from the human outbreak and the strains from one of the recent chicken outbreaks were also identical. This similarity suggests that some clones of C. jejuni remain genetically stable in completely different environments over long periods of time and considerable geographical distances.  相似文献   

3.
The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.  相似文献   

4.
Campylobacter jejuni is a leading bacterial cause of human gastroenteritis. The goal of this study was to analyze the C. jejuni F38011 strain, recovered from an individual with severe enteritis, at a genomic and proteomic level to gain insight into microbial processes. The C. jejuni F38011 genome is comprised of 1,691,939 bp, with a mol.% (G+C) content of 30.5%. PacBio sequencing coupled with REBASE analysis was used to predict C. jejuni F38011 genomic sites and enzymes that may be involved in DNA restriction-modification. A total of five putative methylation motifs were identified as well as the C. jejuni enzymes that could be responsible for the modifications. Peptides corresponding to the deduced amino acid sequence of the C. jejuni enzymes were identified using proteomics. This work sets the stage for studies to dissect the precise functions of the C. jejuni putative restriction-modification enzymes. Taken together, the data generated in this study contributes to our knowledge of the genomic content, methylation profile, and encoding capacity of C. jejuni.  相似文献   

5.
The species Campylobacter jejuni is naturally competent for DNA uptake; nevertheless, nonnaturally transformable strains do exist. For a subset of strains we previously showed that a periplasmic DNase, encoded by dns, inhibits natural transformation in C. jejuni. In the present study, genetic factors coding for DNase activity in the absence of dns were identified. DNA arrays indicated that nonnaturally transformable dns-negative strains contain putative DNA/RNA nonspecific endonucleases encoded by CJE0566 and CJE1441 of strain RM1221. These genes are located on C. jejuni integrated elements 2 and 4. Expression of CJE0566 and CJE1441 from strain RM1221 and a homologous gene from strain 07479 in DNase-negative Escherichia coli and C. jejuni strains indicated that these genes code for DNases. Genetic transfer of the genes to a naturally transformable C. jejuni strain resulted in a decreased efficiency of natural transformation. Modeling suggests that the C. jejuni DNases belong to the Serratia nuclease family. Overall, the data indicate that the acquisition of prophage-encoded DNA/RNA nonspecific endonucleases inhibits the natural transformability of C. jejuni through hydrolysis of DNA.Bacterial species display genetic diversity that can contribute to their capacity to adapt and survive in changing environments. One of the processes contributing to genetic diversity is horizontal gene transfer. This involves the acquisition of genetic material, ultimately resulting in insertion of the acquired DNA and/or deletion of existing genetic material (9). The ability to take up exogenous DNA is present in many bacteria (4, 30). In general, uptake of DNA during natural transformation involves binding of double-stranded DNA to bacterial surface components, followed by transport through the cytoplasmic membrane (5). Upon transport, one of the DNA strands is degraded into nucleotides, whereas the other strand enters the cytoplasm and may provide new characteristics to the host genome.One of the bacterial species naturally competent for DNA uptake is the human pathogen Campylobacter jejuni (32). Worldwide, C. jejuni is one of the most frequent causes of human bacterial gastroenteritis (3). In C. jejuni horizontal gene transfer can occur within a host, as witnessed in chickens infected with two C. jejuni strains carrying distinct genetic markers (7). The ability to acquire exogenous DNA contributes to the generation of genetic diversity in C. jejuni, which is reflected by the genotypic variation seen among strains (8, 29, 33).Thus far, several genes have been implicated in the process of natural transformation of C. jejuni (35). Yet not all C. jejuni strains are equally competent, since differences in natural transformation frequencies have been noted, and even nonnaturally transformable strains do exist (32, 34). Previously, we demonstrated that DNA-hydrolyzing activity inhibits natural transformation of C. jejuni and identified Dns as one of the responsible nucleases (13). Dns is encoded by a putative prophage present in C. jejuni strain RM1221, namely, C. jejuni integrated element 1 (CJIE1).The presence of DNase activity in C. jejuni has long been known and was in fact one of the criteria for Lior''s extended biotyping scheme for thermophilic campylobacters (21). Through identification of dns a genetic basis for DNase activity by a subset of C. jejuni strains has been provided, but the genetic factors responsible for DNase activity in dns-negative nonnaturally transformable C. jejuni strains are not yet known.In this study, we attempted to identify and functionally characterize an additional DNase-encoding gene(s) present in a subset of nonnaturally transformable DNase+ C. jejuni strains. Comparative genomic hybridization for DNase+/dns+ and DNase+/ dns-negative C. jejuni strains revealed three highly homologous genes encoded by the putative phage-related integrated elements CJIE2 and CJIE4. Functional analysis showed that these genes encode DNases that reduce the natural transformability of C. jejuni through hydrolysis of exogenous DNA.  相似文献   

6.
7.
Campylobacter jejuni is one of the leading bacterial causes of food-borne gastroenteritis. Infection with C. jejuni is frequently acquired through the consumption of undercooked poultry or foods cross-contaminated with raw poultry. Given the importance of poultry as a reservoir for Campylobacter organisms, investigators have performed studies to understand the protective role of maternal antibodies in the ecology of Campylobacter colonization of poultry. In a previous study, chicks with maternal antibodies generated against the S3B strain of C. jejuni provided protection against Campylobacter colonization (O. Sahin, N. Luo, S. Huang, and Q. Zhang, Appl. Environ. Microbiol. 69:5372-5379, 2003). We obtained serum samples, collectively referred to as the C. jejuni S3B-SPF sera, from the previous study. These sera were determined to contain maternal antibodies that reacted against C. jejuni whole-cell lysates as judged by enzyme-linked immunosorbent assay. The antigens recognized by the C. jejuni S3B-SPF antibodies were identified by immunoblot analysis, coupled with mass spectrometry, of C. jejuni outer membrane protein extracts. This approach led to the identification of C. jejuni proteins recognized by the maternal antibodies, including the flagellin proteins and CadF adhesin. In vitro assays revealed that the C. jejuni S3B-SPF sera retarded the motility of the C. jejuni S3B homologous strain but did not retard the motility of a heterologous strain of C. jejuni (81-176). This finding provides a possible mechanism explaining why maternal antibodies confer enhanced protection against challenge with a homologous strain compared to a heterologous strain. Collectively, this study provides a list of C. jejuni proteins against which protective antibodies are generated in hens and passed to chicks.  相似文献   

8.
Campylobacter jejuni isolates possess multiple adhesive proteins termed adhesins, which promote the organism's attachment to epithelial cells. Based on the proposal that one or more adhesins are shared among C. jejuni isolates, we hypothesized that C. jejuni strains would compete for intestinal and cecal colonization in broiler chicks. To test this hypothesis, we selected two C. jejuni strains with unique SmaI pulsed-field gel electrophoresis macrorestriction profiles and generated one nalidixic acid-resistant strain (the F38011 Nalr strain) and one streptomycin-resistant strain (the 02-833L Strr strain). In vitro binding assays revealed that the C. jejuni F38011 Nalr and 02-833L Strr strains adhered to LMH chicken hepatocellular carcinoma epithelial cells and that neither strain influenced the binding potential of the other strain at low inoculation doses. However, an increase in the dose of the C. jejuni 02-833L Strr strain relative to that of the C. jejuni F38011 Nalr strain competitively inhibited the binding of the C. jejuni F38011 Nalr strain to LMH cells in a dose-dependent fashion. Similarly, the C. jejuni 02-833L Strr strain was found to significantly reduce the efficiency of intestinal and cecal colonization by the C. jejuni F38011 Nalr strain in broiler chickens. Based on the number of bacteria recovered from the ceca, the maximum number of bacteria that can colonize the digestive tracts of chickens may be limited by host constraints. Collectively, these data support the hypothesis that C. jejuni strains compete for colonization in chicks and suggest that it may be possible to design novel intervention strategies for reducing the level at which C. jejuni colonizes the cecum.  相似文献   

9.
In a previous study, we observed that monoclonal antibodies raised against the hook protein FlgE of Campylobacter jejuni LIO 36, isolate 5226, bound exclusively to this strain. The aim of this study was to elucidate the molecular basis for these binding specificities. The hook protein-encoding gene flgE of C. jejuni was cloned in Escherichia coli and sequenced. The flgE genes of four additional C. jejuni strains were amplified by PCR and also sequenced. Comparison of the deduced amino acid sequences revealed a high degree of variability in the central parts of the FlgE proteins among the strains, including variable and hypervariable domains. These findings may indicate a selective pressure of C. jejuni hosts, forcing the bacteria to generate variations in surface-exposed antigenic determinants.  相似文献   

10.
11.
Campylobacter jejuni (C. jejuni) is one of the most common causes of human bacterial enteritis worldwide primarily due to contaminated poultry products. Previously, we found a significant difference in C. jejuni colonization in the ceca between two genetically distinct broiler lines (Line A (resistant) has less colony than line B (susceptible) on day 7 post inoculation). We hypothesize that different mechanisms between these two genetic lines may affect their ability to resist C. jejuni colonization in chickens. The molecular mechanisms of the local host response to C. jejuni colonization in chickens have not been well understood. In the present study, to profile the cecal gene expression in the response to C. jejuni colonization and to compare differences between two lines at the molecular level, RNA of ceca from two genetic lines of chickens (A and B) were applied to a chicken whole genome microarray for a pair-comparison between inoculated (I) and non-inoculated (N) chickens within each line and between lines. Our results demonstrated that metabolism process and insulin receptor signaling pathways are key contributors to the different response to C. jejuni colonization between lines A and B. With C. jejuni inoculation, lymphocyte activation and lymphoid organ development functions are important for line A host defenses, while cell differentiation, communication and signaling pathways are important for line B. Interestingly, circadian rhythm appears play a critical role in host response of the more resistant A line to C. jejuni colonization. A dramatic differential host response was observed between these two lines of chickens. The more susceptible line B chickens responded to C. jejuni inoculation with a dramatic up-regulation in lipid, glucose, and amino acid metabolism, which is undoubtedly for use in the response to the colonization with little or no change in immune host defenses. However, in more resistant line A birds the host defense responses were characterized by an up-regulation lymphocyte activation, probably by regulatory T cells and an increased expression of the NLR recognition receptor NALP1. To our knowledge, this is the first time each of these responses has been observed in the avian response to an intestinal bacterial pathogen.  相似文献   

12.
Control of Campylobacter in the food chain requires a better understanding of the behaviour of the bacteria in relevant environments. Campylobacter species are largely non-pathogenic in poultry, the body temperature of which is 42 °C. However, the bacteria are highly pathogenic in humans whose body temperature is 37 °C. The aim of this study was to examine if switching from commensal to pathogenic behaviour was related to temperature. We examined the growth, motility and invasion of T84 cells by three species of Campylobacter: C. jejuni 81116, C. jejuni M1, C. coli 1669, C. coli RM2228 and C. fetus fetus NC10842 grown at 37 and 42 °C. Our results suggest that C. jejuni isolates grow similarly at both temperatures but some are more motile at 42 °C and some are more invasive at 37 °C, which may account for its rapid spread in poultry flocks and for infection in humans, respectively. C. coli, which are infrequent causes of Campylobacter infections in humans, is less able to grow and move at 37 °C compared to 42 °C but was significantly more invasive at the lower temperature. C. fetus fetus, which is infrequently found in poultry, is less able to grow and invade at 42 °C.  相似文献   

13.
Campylobacter jejuni is recognized as a leading human food-borne pathogen. Traditional diagnostic testing for C. jejuni is not reliable due to special growth requirements and the possibility that this bacterium can enter a viable but nonculturable state. Nucleic acid-based tests have emerged as a useful alternative to traditional enrichment testing. In this article, we present a 5′-nuclease PCR assay for quantitative detection of C. jejuni and describe its evaluation. A probe including positions 381121 to 381206 of the published C. jejuni strain NCTC 11168 genome sequence was identified. When this probe was applied, the assay was positive for all of the isolates of C. jejuni tested (32 isolates, including the type strain) and negative for all other Campylobacter spp. (11 species tested) and several other bacteria (41 species tested). The total assay could be completed in 3 h with a detection limit of approximately 1 CFU. Quantification was linear over at least 6 log units. Quantitative detection methods are important for both research purposes and further development of C. jejuni detection methods. In this study, we used the assay to investigate to what extent the PCR signals generated by heat-killed bacteria interfere with the detection of viable C. jejuni after exposure at elevated temperatures for up to 5 days. An approach to the reduction of the PCR signal generated by dead bacteria was also investigated by employing externally added DNases to selectively inactivate free DNA and exposed DNA in heat-killed bacteria. The results indicated relatively good discrimination between exposed DNA from dead C. jejuni and protected DNA in living bacteria.  相似文献   

14.
For epidemiological studies of Campylobacter infections, molecular typing methods that can differentiate campylobacters at the strain level are needed. In this study we used a recently developed genotyping method, amplified fragment length polymorphism (AFLP), which is based on selective amplification of restriction fragments of chromosomal DNA, for genetic typing of Campylobacter jejuni and Campylobacter coli strains derived from humans and poultry. We developed an automated AFLP fingerprinting method in which restriction endonucleases HindIII and HhaI were used in combination with one set of selective PCR primers. This method resulted in evenly distributed band patterns for amplified fragments ranging from 50 to 500 bp long. The discriminatory power of AFLP was assessed with a C. jejuni strain, an isogenic flagellin mutant, and distinct C. jejuni strains having known pulsed-field gel electrophoresis and fla PCR-restriction fragment length polymorphism genotypes. Unrelated C. jejuni strains produced heterogeneous patterns, whereas genetically related strains produced similar AFLP patterns. Twenty-five Campylobacter strains obtained from poultry farms in The Netherlands grouped in three C. jejuni clusters that were separate from a C. coli cluster. The band patterns of 10 C. jejuni strains isolated from humans were heterogeneous, and most of these strains grouped with poultry strains. Our results show that AFLP analysis can distinguish genetically unrelated strains from genetically related strains of Campylobacter species. However, desirable genetically related strains can be differentiated by using other genotyping methods. We concluded that automated AFLP analysis is an attractive tool which can be used as a primary method for subtyping large numbers of Campylobacter strains and is extremely useful for epidemiological investigations.  相似文献   

15.
Campylobacter jejuni is a leading cause of human foodborne gastroenteritis worldwide. The interactions between this pathogen and the intestinal microbiome within a host are of interest as endogenous intestinal microbiota mediates a form of resistance to the pathogen. This resistance, termed colonization resistance, is the ability of commensal microbiota to prevent colonization by exogenous pathogens or opportunistic commensals. Although mice normally demonstrate colonization resistance to C. jejuni, we found that mice treated with ampicillin are colonized by C. jejuni, with recovery of Campylobacter from the colon, mesenteric lymph nodes, and spleen. Furthermore, there was a significant reduction in recovery of C. jejuni from ampicillin-treated mice inoculated with a C. jejuni virulence mutant (ΔflgL strain) compared to recovery of mice inoculated with the C. jejuni wild-type strain or the C. jejuni complemented isolate (ΔflgL/flgL). Comparative analysis of the microbiota from nontreated and ampicillin-treated CBA/J mice led to the identification of a lactic acid-fermenting isolate of Enterococcus faecalis that prevented C. jejuni growth in vitro and limited C. jejuni colonization of mice. Next-generation sequencing of DNA from fecal pellets that were collected from ampicillin-treated CBA/J mice revealed a significant decrease in diversity of operational taxonomic units (OTUs) compared to that in control (nontreated) mice. Taken together, we have demonstrated that treatment of mice with ampicillin alters the intestinal microbiota and permits C. jejuni colonization. These findings provide valuable insights for researchers using mice to investigate C. jejuni colonization factors, virulence determinants, or the mechanistic basis of probiotics.  相似文献   

16.
17.
Aims: To determine the effect of various enrofloxacin dose regimes on the colonization and selection of resistance in Campylobacter jejuni strain 81116P in experimentally colonized chickens. Methods and Results: Two experiments were undertaken, in which 14‐day‐old chickens were colonized with 1 × 107–1 × 109 CFU g?1Camp. jejuni strain 81116P and then treated with enrofloxacin at 12–500 ppm in drinking water for various times. Caecal colonization levels were determined at various time‐points after start‐of‐treatment, and the susceptibility of recovered isolates to ciprofloxacin was monitored. Resistance was indicated by growth on agar containing 4 μg ml?1 ciprofloxacin, MICs of 16 μg ml?1 and the Thr86Ile mutation in gyrA. Enrofloxacin at doses of 12–250 ppm reduced Camp. jejuni colonization over the first 48–72 h after start‐of‐treatment. The degree of reduction in colonization was dose, but not treatment time, dependent. In all cases, maximal colonization was re‐established within 4–6 days. Fluoroquinolone‐resistant organisms were recoverable within 48 h of start‐of‐treatment; after a further 24 h all recovered isolates were resistant. In contrast, a dose of 500 ppm enrofloxacin reduced colonization to undetectable levels within 48 h, and the treated birds remained Campylobacter negative throughout the remaining experimental period. By high pressure liquid chromatography, for all doses, the maximum concentrations of enrofloxacin and ciprofloxacin in the caecal contents were detected at the point of treatment completion. Thereafter, levels declined to undetectable by 7 days post‐treatment withdrawal. Conclusions: In a model using chickens maximally colonized with Camp. jejuni 81116P, treatment with enrofloxacin, at doses of 12–250 ppm in drinking water, enables the selection, and clonal expansion, of fluoroquinolone‐resistant organisms. However, this is preventable by treatment with 500 ppm of enrofloxacin. Significance and impact of the study: Treatment of chickens with enrofloxacin selects for resistance in Camp. jejuni in highly pre‐colonized birds. However, a dose of 500 ppm enrofloxacin prevented the selection of resistant campylobacters.  相似文献   

18.
Since the discovery that Campylobacter (C.) jejuni produces Autoinducer 2 (AI-2), various studies have been conducted to explore the function and role of AI-2 in C. jejuni. However, the interpretation of these analyses has been complicated by differences in strain backgrounds, kind of mutation and culture conditions used. Furthermore, all research on AI-2 dependent phenotypes has been conducted with AI-2 synthase (luxS) mutants. This mutation also leads to a disruption of the activated-methyl-cycle. Most studies lack sufficient complementation resulting in not knowing whether phenotypes of luxS mutants depend on disrupted metabolism or lack of AI-2. Additionally, no AI-2 receptor has been found yet. All this contributes to an intensive discussion about the exact role of AI-2 in C. jejuni. Therefore, we examined the impact of different experiment settings on three different C. jejuni luxS mutants on growth and motility (37°C and 42°C). Our study showed that differing phenotypes of C. jejuni luxS mutants depend on strain background, mutation strategy and culture conditions. Furthermore, we complemented experiments with synthetic AI-2 or homocysteine as well as the combination of both. Complementation with AI-2 and AI-2+homocysteine significantly increased the cell number of C. jejuni NCTC 11168ΔluxS in stationary phase compared to the non-complemented C. jejuni NCTC 11168ΔluxS mutant. Genetic complementation of both C. jejuni 81-176 luxS mutants resulted in wild type comparable growth curves. Also swarming ability could be partially complemented. While genetic complementation restored swarming abilities of C. jejuni 81-176ΔluxS, it did not fully restore the phenotype of C. jejuni 81-176::luxS, which indicates that compensatory mutations in other parts of the chromosome and/or potential polar effects may appear in this mutant strain. Also with neither synthetic complementation, the phenotype of the wild type-strains was achieved, suggesting yet another reason for differing phenotypes other than communication and methionine metabolism for C. jejuni luxS mutants.  相似文献   

19.
In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated using NCTC12662 as the indicator strain, which may have biased the selection of phages. A large group of C. jejuni phages rely on the highly diverse capsular polysaccharide (CPS) for infection and recent work identified the O-methyl phosphoramidate modification (MeOPN) of CPS as a phage receptor. We therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb), host range and morphological appearance correlated with the isolation strain. Thus, according to C. jejuni phage grouping, NCTC12662 and NCTC12658 selected for CP81-type phages, while RM1221 selected for CP220-type phages. Furthermore, using acapsular ∆kpsM mutants we demonstrated that phages isolated on NCTC12658 and NCTC12662 were dependent on the capsule for infection. In contrast, CP220-type phages isolated on RM1221 were unable to infect non-motile ∆motA mutants, hence requiring motility for successful infection. Hence, the primary phage isolation strain determines both phage type (CP81 or CP220) as well as receptors (CPS or flagella) recognised by the isolated phages.  相似文献   

20.
Campylobacter jejuni is a leading cause of gastrointestinal infections worldwide, due primarily to its ability to asymptomatically colonize the gastrointestinal tracts of agriculturally relevant animals, including chickens. Infection often occurs following consumption of meat that was contaminated by C. jejuni during harvest. Because of this, much interest lies in understanding the mechanisms that allow C. jejuni to colonize the chicken gastrointestinal tract. To address this, we generated a C. jejuni transposon mutant library that is amenable to insertion sequencing and introduced this mutant pool into day-of-hatch chicks. Following deep sequencing of C. jejuni mutants in the cecal outputs, several novel factors required for efficient colonization of the chicken gastrointestinal tract were identified, including the predicted outer membrane protein MapA. A mutant strain lacking mapA was constructed and found to be significantly reduced for chicken colonization in both competitive infections and monoinfections. Further, we found that mapA is required for in vitro competition with wild-type C. jejuni but is dispensable for growth in monoculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号