首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate of pregnenolone synthesis by cytochrome P-450scc was measured in mitochondria isolated from ovaries of immature rats treated with pregnant mare's serum gonadotropin and human choriogonadotropin. Using cholesterol, 25-hydroxycholesterol, 20 alpha-hydroxycholesterol, (22R)-22-hydroxycholesterol and (22R)-20 alpha,22-dihydroxycholesterol as substrates, we have determined that the first hydroxylation of cholesterol, in the 22R position, is rate limiting in pregnenolone synthesis. It proceeds at only 22% of the rate of either of the subsequent two hydroxylations. 25-Hydroxycholesterol proved to be a suitable substrate for determining the maximum rate of pregnenolone synthesis by cytochrome P-450scc in isolated mitochondria. The maximum rate was 13 mol steroid.min-1.mol cytochrome P-450scc-1 and did not change after the follicles in the immature ovary had been stimulated to mature and luteinize with gonadotropin. Using endogenous cholesterol in isolated mitochondria as substrate, the time course of pregnenolone synthesis was the same during the follicular phase as in the luteal stage of gonadotropin-induced development. We conclude that during the artificial induced development of follicles in the immature ovary, the major cause of the increase in the rate of pregnenolone synthesis is the increase in the cytochrome P-450scc content of the mitochondria, rather than changes in the catalytic activity of cytochrome P-450scc or the cholesterol availability to the cytochrome.  相似文献   

2.
This study compares the side-chain cleavage of aqueous suspensions of cholesterol sulfate with the side-chain cleavage of cholesterol sulfate which is incorporated into phospholipid vesicles. Three different cholesterol desmolase systems are examined: the membrane-bound cholesterol side-chain cleavage system present in inner mitochondrial membranes isolated from bovine adrenal mitochondria; a soluble, lipid-depleted, reconstituted side-chain cleavage system prepared from cytochrome P-450scc, adrenodoxin and adrenodoxin reductase; a membrane associated side-chain cleavage system prepared by adding phospholipid vesicles, prepared from adrenal mitochondrial, to the reconstituted system. Soluble cholesterol sulfate, in low concentration, is a good substrate for the lipid-depleted reconstituted side chain cleavage system. However, at concentrations above 2 microM, in the absence of phospholipids, the sterol sulfate appears to bind at a non-productive site on cytochrome P-450scc which leads to substrate inhibition. Phospholipids, while inhibiting the binding of cholesterol sulfate to the cytochrome, also appear to prevent non-productive binding of the sterol sulfate to the cytochrome. Thus the addition of phospholipids to the lipid-depleted enzyme system leads to an activation of side-chain cleavage of high concentrations of the sterol sulfate. Soluble cholesterol sulfate is a good substrate for both the native and reconstituted membrane-bound systems and no substrate inhibition is observed when the membrane bound enzyme systems are employed in the assay of side-chain activity. However, the cleavage of cholesterol sulfate, which is incorporated into phospholipid vesicles, by both membrane bound enzyme systems appears to be competitively inhibited by the phospholipids of the vesicles. The results of this study suggest that the regulation of the side-chain cleavage of cholesterol sulfate may be entirely different than the regulation of the side-chain cleavage of cholesterol, if cholesterol sulfate exists intracellularly as a soluble non-complexed substrate. If, on the other hand, cholesterol sulfate is present in the cell in lipid droplets as a complex with phospholipids, its metabolism may be under the same constraints as the side-chain cleavage of cholesterol.  相似文献   

3.
Cytochrome P-450scc was isolated from mitochondria of bovine adrenal cortex by hydrophobic chromatography on octyl Sepharose followed by affinity chromatography on cholesterol-7-(thiomethyl)carboxy-3 beta-acetate-Sepharose. The partially purified eluate from the octyl Sepharose resin was free of adrenodoxin and adrenodoxin reductase and displayed biphasic binding characteristics for cholesterol, cholesterol sulfate, and cholesterol acetate (CA). Chromatography of the octyl Sepharose eluate on CA-Sepharose removed extraneous proteins and resolved the cytochrome P-450scc into two fractions, each of which displayed monophasic binding with all three substrates. These fractions behaved identically with respect to their ability to bind substrates, their kinetic properties, and their rate of migration during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The dissociation constants of the cytochrome P-450scc.substrate complexes are 1.1, 2.6, and 1.3 microM for cholesterol, cholesterol sulfate, and cholesterol acetate, respectively. Addition of phospholipids isolated from adrenal cortex mitochondria or adrenodoxin had no effect on the equilibrium binding constants. Addition of Emulgen 913, however, decreased the binding affinities 10-20-fold. Emulgen 913 also inhibited the interaction of adrenodoxin with the cytochrome. An active side chain cleavage system was reconstituted with purified P-450 by addition of saturating amounts of adrenodoxin, adrenodoxin reductase, and NADPH-generating system. The apparent Km values for this reconstituted system of cholesterol, cholesterol sulfate, and cholesterol acetate are 1.8, 1.9, and 0.6 microM, respectively. Since the Km values of substrate oxidation are similar to the Kd values of the cytochrome P-450.substrate complexes, it seems likely that the binding of substrates, particularly when the side chain cleavage system is free of mitochondrial membranes, is not rate-limiting. Based on these results and electrophoretic data, it appears that one cytochrome P-450 present in adrenal mitochondria can oxidize cholesterol, its sulfate, and its acetate. This enzyme represented about 60% of the cytochrome P-450 present in the octyl Sepharose eluate. The factors responsible for the biphasic kinetics of oxidation by intact mitochondria and biphasic binding of sterol substrates by partially purified preparations of cytochrome P-450scc are still unknown.  相似文献   

4.
Covalent modification of cytochrome P-450scc (purified from bovine adrenocortical mitochondria) with pyridoxal 5'-phosphate (PLP) was found to cause inhibition of the electron-accepting ability of this enzyme from its physiological electron donor, adrenodoxin, without conversion to the "P-420" form. Reaction conditions leading to the modification level of 0.82 and 2.85 PLP-Lys residues per cytochrome P-450scc molecule resulted in 60% and 98% inhibition, respectively, of electron-transfer rate from adrenodoxin to cytochrome P-450scc (with beta-NADPH as an electron donor via NADPH-adrenodoxin reductase and with phenyl isocyanide as the exogenous heme ligand of the cytochrome). It was found that covalent PLP modification caused a drastic decrease of cholesterol side-chain cleavage activity when the cholesterol side-chain cleavage enzyme system was reconstituted with native (or PLP-modified) cytochrome P-450scc, adrenodoxin, and NADPH-adrenodoxin reductase. Approximately 60% of the original enzymatic activity of cytochrome P-450scc was protected against inactivation by covalent PLP modification when 20% mole excess adrenodoxin was included during incubation with PLP. Binding affinity of substrate (cholesterol) to cytochrome P-450scc was found to be increased slightly upon covalent modification with PLP by analyzing a substrate-induced spectral change. The interaction of adrenodoxin with cytochrome P-450scc in the absence of substrate (cholesterol) was analyzed by difference absorption spectroscopy with a four-cuvette assembly, and the apparent dissociation constant (Ks) for adrenodoxin binding was found to be increased from 0.38 microM (native) to 33 microM (covalently PLP modified).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We previously reported (Lambeth, J. D., Xu, X. X., and Glover, M. (1987) J. Biol. Chem. 262, 9181-9188) that exogenously added cholesterol sulfate inhibits the conversion of cholesterol to pregnenolone in isolated adrenal mitochondria, and does so by affecting intramitochondrial cholesterol movement but not its subsequent metabolism to pregnenolone by cytochrome P-450scc. We now report that a major kinetic component of the inhibition is noncompetitive with respect to cholesterol, consistent with an allosteric effect at a site other than the substrate binding site of cytochrome P-450scc. We now also report that cholesterol sulfate is present as an endogenous compound in preparations of adrenal mitochondria. Its content varied from 0.05 to 0.8 nmol/mg protein. Cholesterol sulfate level correlated inversely with the mitochondrial cholesterol side-chain cleavage activity. Endogenous cholesterol sulfate thus appeared to account for the variable rates of pregnenolone synthesis which were seen in different mitochondrial preparations. Cholesterol sulfate was metabolized to pregnenolone sulfate by a mitochondrial side-chain cleavage system, but proved to be a relatively poor substrate for an extramitochondrial steroid sulfatase activity present in adrenal cortex. Confirming a role as a naturally occurring inhibitor, removal of endogenous mitochondrial cholesterol sulfate by metabolism to pregnenolone sulfate correlated with a 3-fold activation of cholesterol side-chain cleavage. We suggest that cholesterol sulfate functions in steroidogenic tissues to regulate the magnitude of the steroidogenic response.  相似文献   

6.
Cholesterol side-chain cleavage activities of cytochrome P-450ssc purified from bovine adrenocortical mitochondria were measured for various substrates, including cholesterol, 20[S]-hydroxycholesterol, 22[R]-hydroxycholesterol and 20[R], [R]-dihydroxycholesterol, in the reconstituted enzyme system at various Tween20 concentrations. The side-chain cleavage activity for cholesterol showed more than 10-fold enhancement upon addition of 0.1% Tween20, compared with that without the detergent. Addition of Tween20 did not cause any enhancement of the side-chain cleavage activities for 20[S]-hydroxycholesterol and 22[R]-hydroxycholesterol; rather, it resulted in an inhibition of the activities. The side-chain cleavage activity for 20[R],22[R]-dihydroxycholesterol showed a very high value even without the detergent. As the stimulatory effect of Tween20 was only specific for cholesterol, Tween20 seemed to enhance the rate of access of cholesterol to cytochrome P-450scc. These results are consistent with the suggestion that a transfer of substrate, cholesterol, in mitochondrial inner membrane, to the substrate-binding site of cytochrome P-450scc is the rate-limiting step in the cholesterol side-chain cleavage reaction.  相似文献   

7.
Cytochrome P-450scc (cholesterol side-chain cleavage enzyme) was purified from porcine adrenocortical mitochondria. 2. The purified cytochrome P-450scc was found to be homogeneous on SDS-polyacrylamide gel electrophoresis. 3. The heme content of the purified enzyme was 20.6 nmol/mg protein. 4. The enzymatic activity of the reconstituted cytochrome P-450scc-linked monooxygenase system amounted to 7.8 nmol of pregnenolone formed per nmole of P-450 per minute, with cholesterol as a substrate. 5. The amino acid sequence of the amino-terminal region of the cytochrome P-450scc and the amino acid residue at the carboxyl terminal were determined and compared with those of other mammalian cytochromes P-450scc.  相似文献   

8.
Steroid-induced difference spectra have been used to examine the combination of cholesterol with adrenal mitochondrial cytochrome P-450 which participates in cholesterol side chain cleavage (P-450scc) and the depletion of cholesterol from the cytochrome which results from turnover of the enzyme system. Type I difference spectra-induced by cholest-5-ene-3beta, 25-diol (25-hydroxycholesterol) and cholest-5-ene-3beta, 20 alpha, 22R-triol (20alpha, 22R dihydroxycholesterol) have been used to quantitate binding of cholesterol to two sites (I and II) on cytochrome P-450scc. The action of adrenocorticotropic hormone (ACTH) in vivo and the action of calcium or phosphate ions on isolated mitochondria stimulate the combination of cholesterol with site I but not site II. Cholesterol derived from lecithin-cholesterol micelles, however, binds to both sites. Malate-induced cholesterol depletion occurred at a comparable rate to the transfer of cholesterol from lecithin-cholesterol micelles. However, a residual proportion of cholesterol-cytochrome P-450scc complexes remained, even after 10 min of exposure to malate, and was of similar magnitude in mitochondria from both cycloheximide-treated and stressed rats. It is suggested that this reflects a less reactive form of cholesterol-cytochrome complex. Steroid-induced difference spectra indicate that sites I and II on cytochrome P-450scc are similarly depleted after metabolism of mitochondrial cholesterol in vitro and after inhibition of the action of ACTH in vivo. Anaerobiosis of adrenal cells after excision of the accumulation of cholesterol at cytochrome P-450cc. When anaerobiosis was prevented, cytochrome P-450scc in the freshly isolated mitochondria was apparently essentially free of complexed cholesterol, irrespective of the extent of ACTH action. For 30 min after suspension of the mitochondria in 0.25 M sucrose at 4 degrees, cholesterol combines with cytochrome P-450scc. The extent of this process was not affected by the presence of cycloheximide during ether stress treatment of the rats. It is concluded that there are at least two pools of mitochondrial cholesterol with access to cytochrome P-450scc but that ACTH stimulates only the pool which most readily interacts with the cytochrome.  相似文献   

9.
The cholesterol analogue 25-doxyl-27-nor-cholesterol (CNO), was found to be a substrate for cytochrome P-450scc. Upon incubation with the cytochrome P-450scc electron transfer system, CNO is transformed to pregnenolone (Km = 33 microM, Vmax = 0.32 min-1). The pregnenolone formation from endogenous cholesterol is strongly inhibited by CNO (50% at 5 microM). It binds tightly to cytochrome P-450scc as evidenced by a reversed type I spectral absorbance change (Kd = 5.9 microM) which is paralleled by a greater hyperfine splitting of the room-temperature CNO ESR spectrum due to an enhanced probe immobilization (Kd = 1.9 microM). This finding is in accord with a rotational correlation time of about 10(-7) s, which is close to the tumbling rate of the protein. At 110 K the CNO-bound cytochrome P-450scc displays the ESR g-values gx = 2.404/2.456, gy = 2.245 and gz = 1.916; these are different from those of cholesterol-liganded cytochrome P-450scc and may thus serve as a marker for cytochrome P-450scc. Our data indicate that the stereospecificity of the cytochrome P-450scc side-chain-cleaving activity is not dependent on the nature of the cholesterol side-chain termination (C25 to C27). The substrate binding site is however rather sensitive to a modification of the side chain. The doxyl ring confers a stronger affinity of the substrate to the enzyme. Upon binding it becomes embedded in the protein matrix, and we estimate that its final position is 0.6-1.0 nm from the heme moiety.  相似文献   

10.
Electron paramagnetic resonance (EPR) spectra of ferrous-nitric oxide (14NO and 15NO) cytochrome P-450scc complexed with 20(R),22(R)-dihydroxycholesterol were measured at 77 K with X-band (9.35 GHz) microwave frequency. The EPR spectra clearly showed the spin system to have rhombic symmetry (gx = 2.068, gz = 2.001, gy = 1.961, and Az = 1.89 mT for 14NO) and were distinct from those of 20(S)-hydroxycholesterol complexes. The unique nature of the 20(S)-hydroxycholesterol complexes indicates that 20(S)-hydroxycholesterol is not a proper intermediate in the cholesterol side-chain cleavage reaction. In addition, among various steroid complexes of ferrous-NO species having rhombic symmetry, the EPR spectra of 20(R),22(R)-dihydroxycholesterol complexes were significantly different from those of 22(R)-hydroxycholesterol complexes, suggesting that upon 20S-hydroxylation of 22(R)-hydroxycholesterol the conformation of the active site changes so as to facilitate subsequent cleavage of the C20-C22 bond of the cholesterol side chain. Addition of reduced adrenodoxin to the ferrous-NO cytochrome P-450scc complex in the presence of cholesterol caused a complete shift of the gx = 2.070 signal to gx = 2.075, indicating a reorientation of cholesterol in the substrate-binding site of the enzyme upon adrenodoxin binding. Without reduced adrenodoxin, the process of reorientation of cholesterol in the substrate-binding site was very slow, requiring more than 50 h of incubation at 0 degrees C. The present observations suggest that adrenodoxin may have another positive role in the cholesterol side-chain cleavage reaction, in addition to transferring an electron to the heme of cytochrome P-450scc.  相似文献   

11.
Substrate turnover rates by cytochrome P-450scc were measured in mitochondria isolated from corpora lutea and granulosa cells of follicles. Hydroxycholesterol substrates were added to the mitochondria to test the degree of saturation of the cytochrome with endogenous cholesterol during pregnenolone synthesis. 25-Hydroxycholesterol proved unsuitable for this since it was converted into pregnenolone with a maximum velocity of only 25% of that for cholesterol. 20 alpha-Hydroxycholesterol was found to be suitable providing correction was made for the one less hydroxylation required to convert this substrate into pregnenolone, compared to cholesterol. Mitochondria isolated from large follicles and corpora lutea displayed biphasic time courses for pregnenolone synthesis from endogenous cholesterol with a rapid phase lasting for 2-4 min and a slow phase which was linear for at least 30 min. Only a single rapid phase was observed for these mitochondria in the presence of 20 alpha-hydroxycholesterol. From the degree of stimulation of the substrate turnover rate by this steroid, it was concluded that the endogenous cholesterol concentration was saturating during the fast phase for large follicles but subsaturating in luteal mitochondria. Time courses for pregnenolone synthesis by mitochondria isolated from granulosa cells of small and medium follicles were linear for 30 min and gave a substrate turnover rate of 16-18 mol of steroid/min/mol of cytochrome P-450scc, similar to the turnover rates under saturating substrate conditions determined for large follicles and corpora lutea. The substrate turnover rate for cytochrome P-450scc in medium follicles was not increased by the addition of 20 alpha-hydroxycholesterol, indicating that the cholesterol concentration in the steroidogenic pool of these mitochondria was saturating and remained so over the 30-min duration of the incubation. It is therefore unlikely that gonadotropin stimulation of granulosa cells of small to medium follicles could acutely regulate pregnenolone synthesis by increasing the rate of transfer of cholesterol into a steroidogenic pool. This study shows that as the cytochrome P-450scc concentration in porcine ovarian mitochondria increases during follicular growth and luteinization there is a decrease in the fractional saturation of the cytochrome with cholesterol.  相似文献   

12.
Cholesterol sulfate inhibits (K1/2, 6 microM) the side chain cleavage of exogenous cholesterol in intact rat adrenal mitochondria. Inhibition is at a site other than cytochrome P-450scc: the spin state of the hemoprotein is not perturbed, and its activity is unaffected as judged by the failure to inhibit the metabolism both of 25-hydroxycholesterol and of endogenous cholesterol in a mitochondrial "steroidogenic pool." In contrast, 25-hydroxycholesterol, known to interact with the cytochrome, prevented the cleavage of both endogenous and exogenous cholesterol and produced the expected optical changes in the hemoprotein. Inhibition was specific, since a variety of related compounds including pregnenolone sulfate were not effective. Metabolic conversion to other species was insufficient to account for inhibition, indicating that cholesterol sulfate is the effective molecule. A hallmark of an inhibitor of a transport system is that disruption of the barrier to transport eliminates inhibition. Sonic disruption of mitochondria abated by 70% the effect of cholesterol sulfate, but did not affect inhibition by 25-hydroxycholesterol. Thus, the cholesterol sulfate appears to inhibit an intramitochondrial cholesterol translocation system that functions to move cholesterol into a steroidogenic pool. The high content of cholesterol sulfate in adrenal cortex (Drayer, N.M., Roberts, K.D., Bandi, L., and Lieberman, S. (1964) J. Biol. Chem. 239, 3112-3114) suggests a possible regulatory role for this molecule.  相似文献   

13.
The regulation by cAMP of cholesterol side-chain cleavage activity and the synthesis of immunoisolated cytochrome P-450scc and adrenodoxin proteins was investigated in primary cultures of swine ovarian (granulosa) cells. Administration of a novel adenylate cyclase toxin isolated from Bordetella pertussis increased granulosa-cell cAMP accumulation up to 200-fold over basal. These effects were additive with those of FSH, forskolin, and cholera toxin. In contrast, bacterial extracts BP 347 and BP 348 from mutant strains of B. pertussis that lack either all virulent factors or the adenylate cyclase toxin and hemolysin were devoid of effect. Granulosa-cell cAMP accumulation supported by active bacterial adenylate cyclase was accompanied by 2- to 11-fold, time-dependent increases in [35S]methionine incorporation into immunospecific cytochrome P-450scc and adrenodoxin. These increases in the synthesis of cholesterol side-chain cleavage proteins were associated with enhanced pregnenolone production in response to exogenous sterol substrate, 25-hydroxycholesterol, and augmented progesterone secretion both in the absence and presence of exogenous lipoprotein. Moreover, the effects of Bordetella adenylate cyclase toxin on granulosa cell steroidogenesis were functionally integrated with other regulatory responses, since the non-cAMP dependent effector, estradiol 17-beta, interacted synergistically with bacterial adenylate cyclase in stimulating progesterone production. We conclude that exogenous adenylate cyclase isolated from B. pertussis can be functionally integrated into the cAMP-dependent effector pathway of granulosa cells with a resulting increase in intracellular cAMP concentrations, augmented biosynthesis of progesterone and pregnenolone, enhanced synthesis of immunospecific cytochrome P-450scc and adrenodoxin, and synergistic interactions with a non-cAMP-dependent ovarian effector hormone (estradiol).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Transient accumulation of a dihydroxylated steroid was found when 22R-hydroxycholest-4-en-3-one was used as the substrate for a reconstituted cholesterol side-chain cleavage system derived from bovine adrenocortical mitochondria. The indications were that the accumulated steroid was an intermediate in the cytochrome P-450scc-catalyzed reaction. The retention time of the accumulated intermediate was identical with that of authentic 20,22-dihydroxycholest-4-en-3-one on HPLC. When 22R-hydroxycholesterol and 22R-hydroxycholest-4-en-3-one were incubated simultaneously, the total amount of reaction products was essentially the same as that observed with 22R-hydroxycholest-4-en-3-one alone. Under the conditions employed, the apparent turnover number of cytochrome P-450scc for 22R-hydroxycholesterol was calculated to be 77 nmol/min/nmol P-450 from the amount of pregnenolone formed, whereas the apparent turnover number for 22R-hydroxycholest-4-en-3-one was 64 nmol/min/nmol P-450 with respect to the intermediate formation and 77 nmol/min/nmol P-450 with respect to the progesterone formation. The apparent turnover number for 20,22-dihydroxycholest-4-en-3-one was about 125 nmol/min/nmol P-450, which was not significantly different from that of 20,22-dihydroxycholesterol. The apparent Km for 22R-hydroxycholesterol was about 20 microM and those for 22R-hydroxycholest-4-en-3-one and 20,22-dihydroxycholest-4-en-3-one were 50 and 40 microM, respectively. Thus, 22R-hydroxycholest-4-en-3-one was efficiently metabolized to progesterone by way of 20,22-dihydroxycholest-4-en-3-one by cytochrome P-450scc.  相似文献   

15.
We have previously reported that the steroidogenic activity of the bovine placentome is stimulated by a calcium-mediated, cyclic nucleotide-independent mechanism and that this steroidogenesis is limited by the availability of sterol substrate to the side-chain cleavage enzyme. We have recently established that the antibody against bovine adrenal cytochrome P-450 cholesterol side-chain cleavage enzyme (P-450scc) can be used to specifically detect P-450scc in both bovine placentome and corpus luteum. In the present study, we used an immunogold technique to localize the P-450scc in the bovine placentome by electron microscopy. The mononucleate cell of the cotyledon showed both giant and normal-sized mitochondria, with the latter, predominating. Both mitochondrial types found in the mononucleate cells clearly displayed gold particles located on the cristae; in contrast, these particles were absent in the binucleate cells. It is worth noting that giant mitochondria were found exclusively in the placental mononucleate cells in both the fetal and maternal sites but not in the binucleate cells. These findings suggest that the cholesterol side-chain cleavage enzyme is present in bovine cotyledon cells, primarily in mononucleate cells. The variations in P-450scc immunoreactivity among different cells of the placenta are suggestive of different steroidogenetic capacities of the cells.  相似文献   

16.
M Tsubaki  A Hiwatashi  Y Ichikawa 《Biochemistry》1987,26(14):4535-4540
Interactions of cholesterol analogues and inhibitors with the heme moiety of cytochrome P-450scc were examined by resonance Raman spectroscopy. The Raman spectra of ferric cytochrome P-450scc complexed with inhibitors such as cyanide, phenyl isocyanide, aminoglutethimide, and metyrapone were characteristic of low-spin state and were very similar. However, the effect of exchange of the sixth ligand from the oxygen atom (ferric low-spin state) to the nitrogen atom upon aminoglutethimide and metyrapone binding was seen as down-frequency shifts of the v3 band from 1503 to 1501 and 1502 cm-1, respectively, while cyanide and phenyl isocyanide binding caused an up-frequency shift of the v3 band to 1505 cm-1. The effects of cholesterol analogues [22(R)-hydroxycholesterol, 22(S)-hydroxycholesterol, 22-ketocholesterol, 20(S)-hydroxycholesterol, and 25-hydroxycholesterol] on a Fe2+-CO stretching frequency of cytochrome P-450scc in ferrous CO form were examined. The 22(R)-hydroxycholesterol complex could not give a clear Fe2+-CO stretching Raman band due to a strong photodissociability. 22(S)-Hydroxycholesterol and 25-hydroxycholesterol complexes gave the Raman bands at 487 and 483 cm-1, respectively, whereas 20(S)-hydroxycholesterol and 22-ketocholesterol complexes gave Fe2+-CO stretching frequencies (478 cm-1) almost identical with that without substrate (477 cm-1). These findings suggest the existence of the following physiologically important natures of the cytochrome P-450scc active site: (1) there is a strong steric interaction between heme-bound carbon monoxide and the 22(R)-hydroxyl group or the 22(R)-hydrogen of the steroid side chain and (2) the hydroxylation at the 20S position may cause a conformational change of the side-chain group relative to the heme.  相似文献   

17.
The actions of insulin and somatomedin C (insulin-like growth factor I) on cholesterol side-chain cleavage activity and the synthesis of cytochrome P-450scc and adrenodoxin were investigated in primary cultures of swine ovarian (granulosa) cells. Nanomolar concentrations of pure human somatomedin C stimulated biosynthesis of progesterone and 20 alpha-hydroxypregn-4-en-3-one. Moreover, in the presence of exogenous sterol substrate for cholesterol side-chain cleavage, somatomedin C significantly enhanced pregnenolone biosynthesis in a time- and dose-dependent manner. This augmentation of functional cholesterol side-chain cleavage activity was accompanied by a dose-dependent (2-16-fold) increase in [35S]methionine incorporation into specific immunoprecipitable cytochrome P-450scc and adrenodoxin. Micromolar concentrations of insulin (but not proinsulin or desoctapeptide) also induced synthesis of cholesterol side-chain cleavage constituents by 4-7-fold. These results demonstrate that an insulin-like growth factor, somatomedin C, exerts discrete differentiating effects on ovarian cells characterized by increased synthesis of immunospecific cytochrome P-450scc and adrenodoxin. Thus, we infer that somatomedin C may serve a critical role in the differentiation of steroidogenic cells in the mammalian ovary.  相似文献   

18.
M Tsubaki  A Hiwatashi  Y Ichikawa  H Hori 《Biochemistry》1987,26(14):4527-4534
Electron paramagnetic resonance (EPR) spectra of nitric oxide (NO) complexes of ferrous cytochrome P-450scc were measured at 77 K for the first time without using the rapid-mixing and freeze-quenching technique. Without substrate the EPR spectra were very similar to those of cytochrome P-450cam (from Pseudomonas putida) and cytochrome P-450LM (from rat liver microsomes) with rhombic symmetry; gx = 2.071, gz = 2.001, gy = 1.962, and Az = 2.2 mT for 14NO complexes. Upon addition of substrates [such as cholesterol, 22(S)-hydroxycholesterol, 22(R)-hydroxycholesterol, 25-hydroxycholesterol, and 22-ketocholesterol], the EPR spectra exhibited many variations having rhombic symmetry in the major component and an additional minor component with less rhombic symmetry. Furthermore, addition of 20(S)-hydroxycholesterol caused a striking change in the EPR spectrum. The component with rhombic symmetry disappeared completely, and the component with less rhombic symmetry dominated (gx = 2.027, gz = 2.007, gy = 1.984, and Az = 1.76 mT for 14NO complexes). These observations suggest the existence of the following physiologically important natures: (1) the conformational flexibility of the active site of the enzyme due to the steric interaction between the substrate and the heme-bound ligand molecule and (2) the importance of the hydroxylation of the cholesterol side chain at the 20S position to proceed the side-chain cleavage reaction in cytochrome P-450scc.  相似文献   

19.
Low temperature photolysis of nitric oxide from the nitrosyl complexes of ferric cytochrome P450scc was examined by EPR spectroscopy to elucidate the stereochemical interaction between heme-bound ligand and side-chain of cholesterol or its hydroxylated analogues at the substrate-binding site. The photoproducts of the NO complexes trapped at 5 K exhibited new EPR absorptions providing information on the steric crowding of the distal heme moiety. Without substrate, the photoproduct exhibited a broad EPR absorption at g-8 due to magnetic dipole-dipole interaction between the photo-dissociated NO (S = 1/2) and the ferric iron (S = 5/2). This indicates that the photo-dissociated NO can move far away from the heme iron in the less restricted distal heme moiety of the substrate-free cytochrome P450scc. In the presence of substrates, such as cholesterol, 20(S)-hydroxycholesterol, 22(S)-hydroxycholesterol, 22(R)-hydroxycholesterol, and 25-hydroxycholesterol, the EPR spectra of the photoproducts exhibited many variations having broad g-8 absorptions and/or the widespread signals together with zero-field absorption. Among the steroid complexes used, 20(S)-hydroxycholesterol complex exhibited a conspicuously widespread EPR signal with a distinct zero-field absorption due to a spin-coupled interaction between the ferric iron (S = 5/2) and the photolyzed NO (S = 1/2). These results indicate that the 20(S)-hydroxycholesterol complex has restricted substrate-binding structure and that the hydroxylation of the cholesterol side-chain at the 22R position is necessary to proceed the side-chain cleavage reaction properly in cytochrome P450scc.  相似文献   

20.
Human placental mitochondrial cytochrome P-450 was purified to electrophoretic homogeneity by hydrophobic, anion exchange and cation exchange column chromatography. The specific content of the purified protein was 15.7 nmol/mg protein and it showed a single band mol. wt 48,000 D in SDS-gel electrophoresis. When reconstituted with bovine adrenal adrenodoxin reductase and adrenodoxin it converted cholesterol to pregnenolone (cholesterol side-chain cleavage activity, CSCC) at the rate of 1 pmol/min/pmol P-450. Antibodies against the purified protein were raised in rabbits. Inhibition studies demonstrated 85% inhibition of placental CSCC activity at an antibody/protein ratio of 10:1. Placental microsomal aromatase activity was inhibited by 47% at the same antibody/protein ratio. The antibody inhibited bovine mitochondrial CSCC activity by 87% at the same antibody/protein ratio. Placental microsomal 7-ethoxycoumarin O-deethylase, aryl hydrocarbon hydroxylase and 7-ethoxyresorufin O-deethylase activities were not significantly inhibited by the antibody. The results indicate that the purified protein catalyzes cholesterol side-chain cleavage reaction, human placental microsomal aromatase and bovine adrenal mitochondrial P-450scc may share common antigenic determinants with placental P-450scc, but the placental microsomal xenobiotic-metabolizing cytochrome(s) is (are) distinctly different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号