首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Hsp90 assembles with steroid receptors and other client proteins in association with one or more Hsp90-binding cochaperones, some of which contain a common tetratricopeptide repeat (TPR) domain. Included in the TPR cochaperones are the Hsp70-Hsp90-organizing protein Hop, the FK506-binding immunophilins FKBP52 and FKBP51, the cyclosporin A-binding immunophilin CyP40, and protein phosphatase PP5. The TPR domains from these proteins have similar x-ray crystallographic structures and target cochaperone binding to the MEEVD sequence that terminates Hsp90. However, despite these similarities, the TPR cochaperones have distinctive properties for binding Hsp90 and assembling with Hsp90.steroid receptor complexes. To identify structural features that differentiate binding of FKBP51 and FKBP52 to Hsp90, we generated an assortment of truncation mutants and chimeras that were compared for coimmunoprecipitation with Hsp90. Although the core TPR domain (approximately amino acids 260-400) of FKBP51 and FKBP52 is required for Hsp90 binding, the C-terminal 60 amino acids (approximately 400-end) also influence Hsp90 binding. More specifically, we find that amino acids 400-420 play a critical role for Hsp90 binding by either FKBP. Within this 20-amino acid region, we have identified a consensus sequence motif that is also present in some other TPR cochaperones. Additionally, the final 30 amino acids of FKBP51 enhance binding to Hsp90, whereas the corresponding region of FKBP52 moderates binding to Hsp90. Taking into account the x-ray crystal structure for FKBP51, we conclude that the C-terminal regions of FKBP51 and FKBP52 outside the core TPR domains are likely to assume alternative conformations that significantly impact Hsp90 binding.  相似文献   

2.
Interaction of the Hsp90 cochaperone cyclophilin 40 with Hsc70   总被引:1,自引:0,他引:1       下载免费PDF全文
The high-affinity ligand-binding form of unactivated steroid receptors exists as a multicomponent complex that includes heat shock protein (Hsp)90; one of the immunophilins cyclophilin 40 (CyP40), FKBP51, or FKBP52; and an additional p23 protein component. Assembly of this heterocomplex is mediated by Hsp70 in association with accessory chaperones Hsp40, Hip, and Hop. A conserved structural element incorporating a tetratricopeptide repeat (TPR) domain mediates the interaction of the immunophilins with Hsp90 by accommodating the C-terminal EEVD peptide of the chaperone through a network of electrostatic and hydrophobic interactions. TPR cochaperones recognize the EEVD structural motif common to both Hsp90 and Hsp70 through a highly conserved clamp domain. In the present study, we investigated in vitro the molecular interactions between CyP40 and FKBP52 and other stress-related components involved in steroid receptor assembly, namely Hsp70 and Hop. Using a binding protein-retention assay with CyP40 fused to glutathione S-transferase immobilized on glutathione-agarose, we have identified the constitutively expressed form of Hsp70, heat shock cognate (Hsc)70, as an additional target for CyP40. Deletion mapping studies showed the binding determinants to be similar to those for CyP40-Hsp90 interaction. Furthermore, a mutational analysis of CyP40 clamp domain residues confirmed the importance of this motif in CyP40-Hsc70 interaction. Additional residues thought to mediate binding specificity through hydrophobic interactions were also important for Hsc70 recognition. CyP40 was shown to have a preference for Hsp90 over Hsc70. Surprisingly, FKBP52 was unable to compete with CyP40 for Hsc70 binding, suggesting that FKBP52 discriminates between the TPR cochaperone-binding sites in Hsp90 and Hsp70. Hop, which contains multiple units of the TPR motif, was shown to be a direct competitor with CyP40 for Hsc70 binding. Similar to Hop, CyP40 was shown not to influence the adenosine triphosphatase activity of Hsc70. Our results suggest that CyP40 may have a modulating role in Hsc70 as well as Hsp90 cellular function.  相似文献   

3.
A cDNA for human FKBP51 has been cloned and sequenced, and protein products have been expressed in both in vitro and bacterial systems. The deduced amino acid sequence for human FKBP51 is 90% identical to sequences of recently described murine proteins and is 55% identical to the sequence of human FKBP52. Human FKBP51 mRNA is expressed in a wide range of tissues, and the protein has peptidylprolyl isomerase activity that is inhibited by FK506 but not cyclosporine. FKBP51 is the same as a previously described progesterone receptor-associated immunophilin that, similar to FKBP52 and cyclophilin 40, is an Hsp90-binding protein and appears in functionally mature steroid receptor complexes along with Hsp90 and p23. Each of the three receptor-associated immunophilins displays interactions with progesterone receptor that are more dynamic than Hsp90-receptor interactions. Whereas FKBP52 and FKBP51 compete about equally well for binding to Hsp90 in a purified system, FKBP51 accumulates preferentially in progesterone receptor complexes assembled in a cell-free system. This observation provides a precedent for differential interactions between Hsp90-associated immunophilins and target proteins such as steroid receptors.  相似文献   

4.
Localization of the chaperone domain of FKBP52   总被引:3,自引:0,他引:3  
FKBP52, a multidomain peptidyl prolyl cis/trans-isomerase (PPIase), is found in complex with the chaperone Hsp90 and the co-chaperone p23. It displays both PPIase and chaperone activity in vitro. To localize these two activities to specific regions of the protein, we created and analyzed a set of fragments of FKBP52. The PPIase activity toward both peptides and proteins is confined entirely to domain 1 (amino acids 1-148). The chaperone activity, however, resides in the C-terminal part of FKBP52, mainly in the region between amino acids 264 and 400 (domain 3). Interestingly, this domain also contains the tetratricopeptide repeats, which are responsible for the binding to C-terminal amino acids of Hsp90. Competition assays with a C-terminal Hsp90 peptide suggest that the non-native protein and Hsp90 are bound by different regions within this domain.  相似文献   

5.
6.
The chaperone Hsp90 is required for the appropriate regulation of numerous key signaling molecules, including the progesterone receptor (PR). Many important cochaperones bind Hsp90 through their tetratricopeptide repeat (TPR) domains. Two such proteins, GCUNC45 and FKBP52, assist PR chaperoning and are thought to interact sequentially with PR-Hsp90 complexes. TPR proteins bind to the C-terminal MEEVD sequence of Hsp90, but GCUNC45 has been shown also to bind to a novel site near the N-terminus. We now show that FKBP52 is also able to bind to this site, and that these two cochaperones act competitively, through Hsp90, to modulate PR activity. The N-terminal site involves noncontiguous amino acids within or near the ATP binding pocket of Hsp90. TPR interactions at this site are thus strongly regulated by nucleotide binding and Hsp90 conformation. We propose an expanded model for client chaperoning in which the coordinated use of TPR recognition sites at both N- and C-terminal ends of Hsp90 enhances its ability to coordinate interactions with multiple TPR partners.  相似文献   

7.
8.
The tetratricopeptide repeat domain (TPR)-containing co-chaperone Hsp-organising protein (Hop) plays a critical role in mediating interactions between Heat Shock Protein (Hsp)70 and Hsp90 as part of the cellular assembly machine. It also modulates the ATPase activity of both Hsp70 and Hsp90, thus facilitating client protein transfer between the two. Despite structural work on the individual domains of Hop, no structure for the full-length protein exists, nor is it clear exactly how Hop interacts with Hsp90, although it is known that its primary binding site is the C-terminal MEEVD motif. Here, we have undertaken a biophysical analysis of the structure and binding of Hop to Hsp90 using a variety of truncation mutants of both Hop and Hsp90, in addition to mutants of Hsp90 that are thought to modulate the conformation, in particular the N-terminal dimerisation of the chaperone. The results establish that whilst the primary binding site of Hop is the C-terminal MEEVD peptide of Hsp90, binding also occurs at additional sites in the C-terminal and middle domain. In contrast, we show that another TPR-containing co-chaperone, CyP40, binds solely to the C-terminus of Hsp90.Truncation mutants of Hop were generated and used to investigate the dimerisation interface of the protein. In good agreement with recently published data, we find that the TPR2a domain that contains the Hsp90-binding site is also the primary site for dimerisation. However, our results suggest that residues within the TPR2b may play a role. Together, these data along with shape reconstruction analysis from small-angle X-ray scattering measurements are used to generate a solution structure for full-length Hop, which we show has an overall butterfly-like quaternary structure.Studies on the nucleotide dependence of Hop binding to Hsp90 establish that Hop binds to the nucleotide-free, ‘open’ state of Hsp90. However, the Hsp90-Hop complex is weakened by the conformational changes that occur in Hsp90 upon ATP binding. Together, the data are used to propose a detailed model of how Hop may help present the client protein to Hsp90 by aligning the bound client on Hsp70 with the middle domain of Hsp90. It is likely that Hop binds to both monomers of Hsp90 in the form of a clamp, interacting with residues in the middle domain of Hsp90, thus preventing ATP hydrolysis, possibly by the prevention of association of N-terminal and middle domains in individual Hsp90 monomers.  相似文献   

9.
Hsp90 is a ubiquitous molecular chaperone that plays a key role in the malignant development of hormone-dependent pathologies such as cancer. An important role for Hsp90 is to facilitate the stable binding of steroid hormones to their respective receptors enabling the ligand-based signal to be carried to the nucleus and ultimately resulting in the up-regulation of gene expression. Along with Hsp90, this dynamic and transient process also involves the recruitment of additional proteins and co-chaperones that add further stability to the mature receptor–chaperone complex. In the work presented here, we describe four new protocols for the bacterial over-expression and column chromatographic purification of the human p23, FKBP52, HOP and SGTα proteins. Each of these proteins plays a distinct role in the steroid hormone receptor regulatory cycle. Affinity, ion-exchange and size-exclusion techniques were used to produce target yields greater than 50 mg/L of cultured media, with each purified sample reaching near absolute sample homogeneity. These results reveal a reliable system for the production of p23, FKBP52, HOP and SGTα substrate proteins for use in the investigation of the Hsp90-associated protein interactions of the steroid hormone receptor cycle.  相似文献   

10.
A system consisting of five purified proteins: Hsp90, Hsp70, Hop, Hsp40, and p23, acts as a machinery for assembly of glucocorticoid receptor (GR).Hsp90 heterocomplexes. Hop binds independently to Hsp90 and to Hsp70 to form a Hsp90.Hop.Hsp70.Hsp40 complex that is sufficient to convert the GR to its steroid binding form, and this four-protein complex will form stable GR.Hsp90 heterocomplexes if p23 is added to the system (Dittmar, K. D., Banach, M., Galigniana, M. D., and Pratt, W. B. (1998) J. Biol. Chem. 273, 7358-7366). Hop has been considered essential for the formation of receptor.Hsp90 heterocomplexes and GR folding. Here we use Hsp90 and Hsp70 purified free of all traces of Hop and Hsp40 to show that Hop is not required for GR.Hsp90 heterocomplex assembly and activation of steroid binding activity. Rather, Hop enhances the rate of the process. We also show that Hsp40 is not essential for GR folding by the five-protein system but enhances a process that occurs less effectively when it is not present. By carrying out assembly in the presence of radiolabeled steroid to bind to the GR as soon as it is converted to the steroid binding state, we show that the folding change is brought about by only two essential components, Hsp90 and Hsp70, and that Hop, Hsp40, and p23 act as nonessential co-chaperones.  相似文献   

11.
FKBP38 is a negative effector of the anti-apoptotic Bcl-2 protein in neuroblastoma cells. The interaction with Bcl-2 and the enzyme activity of FKBP38 depend on prior binding of calmodulin-Ca(2+) (CaM-Ca(2+)) at high Ca(2+) concentrations. The FKBP38 protein structure contains three tetratricopeptide repeat (TPR) motifs corresponding to the Hsp90 interaction sites of other immunophilins. In this study we show that the TPR domain of FKBP38 interacts with the C-terminal domain of Hsp90, but only if the FKBP38-CaM-Ca(2+) complex is preformed. Hence, FKBP38 is the first example of a TPR-containing immunophilin that interacts cofactor-dependently with Hsp90. In the ternary Hsp90-FKBP38-CaM-Ca(2+) complex the active site of FKBP38 is blocked, thus preventing interactions with Bcl-2. The dual control of the active site cleft of FKBP38 by CaM-Ca(2+) and Hsp90 highlights the importance of the enzyme activity of the FKBP38-CaM-Ca(2+) complex in the regulation of programmed cell death.  相似文献   

12.
13.
Glucocorticoid receptors must be complexed with Hsp90 in order to bind steroids, and it has been reported that at least three other proteins, Hop, Hsc70, and a J-domain protein (either Hsp40 or Ydj1), are required for formation of active Hsp90-steroid receptor complex. In the present study, we reinvestigated activation of stripped steroid receptors isolated from either L cells or WCL2 cells. Surprisingly, we found, using highly purified proteins, that only Hsp90 and Hsc70 are required for the activation of glucocorticoid receptors in the presence of steroids; in the absence of steroids, either p23 or molybdate are also required as reported previously. Addition of Hop or Ydj1 had no affect on the rate or magnitude of the activation of the stripped receptors, and quantitative Western blots confirmed that neither Hop or Hsp40 were present in our protein preparations or in the stripped receptors. Furthermore, a truncated recombinant Hsp70 that does not bind Hop or Hsp40 was as effective as wild-type Hsp70 in activating stripped receptor. Since Hsc70 does not bind directly to Hsp90 but both proteins bind to Hop, it has been suggested that Hop acts as a bridge between Hsp90 and Hsp70. However, we found that after Hsc70 or Hsp90 bind directly to the stripped receptors, they are fully reactivated by Hsp90 or Hsc70, respectively. We, therefore, conclude that Hsp90 and Hsc70 bind independently to stripped glucocorticoid receptors and alone are sufficient to activate them to bind steroids.  相似文献   

14.
Stimulation of the weak ATPase activity of human hsp90 by a client protein.   总被引:7,自引:0,他引:7  
Heat shock protein 90 (Hsp90) is a molecular chaperone involved in the folding and assembly of a limited set of "client" proteins, many of which are involved in signal transduction pathways. In vivo, it is found in complex with additional proteins, including the chaperones Hsp70, Hsp40, Hip and Hop (Hsp-interacting and Hsp-organising proteins, respectively), as well as high molecular mass immunophilins, such as FKBP59, and the small acidic protein p23. The role of these proteins in Hsp90-mediated assembly processes is poorly understood. It is known that ATP binding and hydrolysis are essential for Hsp90 function in vivo and in vitro.Here we show, for the first time, that human Hsp90 has ATPase activity in vitro. The ATPase activity is characterised using a sensitive assay based on a chemically modified form of the phosphate-binding protein from Escherichia coli. Human Hsp90 is a very weak ATPase, its activity is significantly lower than that of the yeast homologue, and it has a half-life of ATP hydrolysis of eight minutes at 37 degrees C. Using a physiological substrate of Hsp90, the ligand-binding domain of the glucocorticoid receptor, we show that this "client" protein can stimulate the ATPase activity up to 200-fold. This effect is highly specific and unfolded or partially folded proteins, which are known to bind to Hsp90, do not affect the ATPase activity. In addition, the peroxisome proliferator-activated receptor, which is related in both sequence and structure to the glucocorticoid receptor but which does not bind Hsp90, has no observable effect on the ATPase activity.We establish the effect of the co-chaperones Hop, FKBP59 and p23 on the basal ATPase activity as well as the client protein-stimulated ATPase activity of human Hsp90. In contrast with the yeast system, human Hop has little effect on the basal rate of ATP hydrolysis but significantly inhibits the client-protein stimulated rate. Similarly, FKBP59 has little effect on the basal rate but stimulates the client-protein stimulated rate further. In contrast, p23 inhibits both the basal and stimulated rates of ATP hydrolysis.Our results show that the ATPase activity of human Hsp90 is highly regulated by both client protein and co-chaperone binding. We suggest that the rate of ATP hydrolysis is critical to the mode of action of Hsp90, consistent with results that have shown that both over and under-active ATPase mutants of yeast Hsp90 have impaired function in vivo. We suggest that the tight regulation of the ATPase activity of Hsp90 is important and allows the client protein to remain bound to Hsp90 for sufficient time for activation to occur.  相似文献   

15.
The Hsp90 chaperoning pathway and its model client substrate, the progesterone receptor (PR), have been used extensively to study chaperone complex formation and maturation of a client substrate in a near native state. This chaperoning pathway can be reconstituted in vitro with the addition of five proteins plus ATP: Hsp40, Hsp70, Hop, Hsp90, and p23. The addition of these proteins is necessary to reconstitute hormone-binding capacity to the immuno-isolated PR. It was recently shown that the first step for the recognition of PR by this system is binding by Hsp40. We compared type I and type II Hsp40 proteins and created point mutations in Hsp40 and Hsp70 to understand the requirements for this first step. The type I proteins, Ydj1 and DjA1 (HDJ2), and a type II, DjB1 (HDJ1), act similarly in promoting hormone binding and Hsp70 association to PR, while having different binding characteristics to PR. Ydj1 and DjA1 bind tightly to PR whereas the binding of DjB1 apparently has rapid on and off rates and its binding cannot be observed by antibody pull-down methods using either purified proteins or cell lysates. Mutation studies indicate that client binding, interactions between Hsp40 and Hsp70, plus ATP hydrolysis by Hsp70 are all required to promote conformational maturation of PR via the Hsp90 pathway.  相似文献   

16.
真核细胞中近100种蛋白质都受Hsp90的调节。这些蛋白质多与信号转导作用有关,它们与Hsp90一起进入一个以Hsp90/Hsp70为主的伴侣复合体,在复合体内完成信号转导作用。Hsp90除了和蛋白质的伴侣位点结合以外,还在其他位点与辅助因子连接,这是Hsp90能与蛋白质及辅助因子组装成复合体,并进而调节其信号作用的结构基础。类固醇受体等蛋白质的信号转导作用是在Hsp70、Hsp90为基础的5种蛋白质(Hsp90,Hsp70,Hop,Hsp40和p23)组成的复合体中进行的。这个系统可以帮助理解在真核细胞中,Hsp70和Hsp90怎样联合作用,改变底物蛋白构象,以及怎样应答信号作用。  相似文献   

17.
Functional steroid receptor complexes are assembled and maintained by an ordered pathway of interactions involving multiple components of the cellular chaperone machinery. Two of these components, Hop and Hip, serve as co-chaperones to the major heat shock proteins (Hsps), Hsp70 and Hsp90, and participate in intermediate stages of receptor assembly. In an effort to better understand the functions of Hop and Hip in the assembly process, we focused on a region of similarity located near the C-terminus of each co-chaperone. Contained within this region is a repeated sequence motif we have termed the DP repeat. Earlier mutagenesis studies implicated the DP repeat of either Hop or Hip in Hsp70 binding and in normal assembly of the co-chaperones with progesterone receptor (PR) complexes. We report here that the DP repeat lies within a protease-resistant domain that extends to or is near the C-terminus of both co-chaperones. Point mutations in the DP repeats render the C-terminal regions hypersensitive to proteolysis. In addition, a Hop DP mutant displays altered proteolytic digestion patterns, which suggest that the DP-repeat region influences the folding of other Hop domains. Although the respective DP regions of Hop and Hip share sequence and structural similarities, they are not functionally interchangeable. Moreover, a double-point mutation within the second DP-repeat unit of Hop that converts this to the sequence found in Hip disrupts Hop function; however, the corresponding mutation in Hip does not alter its function. We conclude that the DP repeats are important structural elements within a C-terminal domain, which is important for Hop and Hip function.  相似文献   

18.
Hsp70/Hsp90 organizing protein (Hop) coordinates Hsp70 and Hsp90 interactions during assembly of steroid receptor complexes. Hop is composed of three tetratricopeptide repeat (TPR) domains (TPR1, TPR2a, and TPR2b) and two DP repeat domains (DP1 and DP2); Hsp70 interacts directly with TPR1 and Hsp90 with TPR2a, but the function of other domains is less clear. Human Hop and the Saccharomyces cerevisiae ortholog Sti1p, which share a common domain arrangement, are functionally interchangeable in a yeast growth assay and in supporting the efficient maturation of glucocorticoid receptor (GR) function. To gain a better understanding of Hop structure/function relationships, we have extended comparisons to the Hop ortholog from Drosophila melanogaster (dHop), which lacks DP1. Although dHop binds Hsp70 and Hsp90 and can rescue the growth defect in yeast lacking Sti1p, dHop failed to support GR function in yeast, which suggests a novel role for Hop in GR maturation that goes beyond Hsp binding. Chimeric Hop constructs combining human and Drosophila domains demonstrate that the C-terminal domain DP2 is critical for this previously unrecognized role in steroid receptor function.  相似文献   

19.
The sequential binding of different tetratricopeptide repeat (TPR) proteins to heat shock protein 90 (hsp90) is essential to its chaperone function in vivo. We have previously shown that three basic residues in the TPR domain of PP5 are required for binding to the acidic C-terminal domain of hsp90. We have now tested which acidic residues in this C-terminal domain are required for binding to three different TPR proteins as follows: PP5, FKBP52, and Hop. Mutation of Glu-729, Glu-730, and Asp-732 at the C terminus of hsp90 interfered with binding of all three TPR proteins. Mutation of Glu-720, Asp-722, Asp-723, and Asp-724 inhibited binding of FKBP52 and PP5 but not of Hop. Mutation of Glu-651 and Asp-653 did not affect binding of FKBP52 or PP5 but inhibited both Hop binding and hsp90 chaperone activity. We also found that a conserved Lys residue required for PP5 binding to hsp90 was critical for the binding of FKBP52 but not for the binding of Hop to hsp90. These results suggest distinct but overlapping binding sites on hsp90 for different TPR proteins and indicate that the binding site for Hop, which is associated with hsp90 in intermediate stages of protein folding, overlaps with a site of chaperone activity.  相似文献   

20.
Co-chaperone FKBP38 promotes HERG trafficking   总被引:1,自引:0,他引:1  
The Long QT Syndrome is a cardiac disorder associated with ventricular arrhythmias that can lead to syncope and sudden death. One prominent form of the Long QT syndrome has been linked to mutations in the HERG gene (KCNH2) that encodes the voltage-dependent delayed rectifier potassium channel (I(Kr)). In order to search for HERG-interacting proteins important for HERG maturation and trafficking, we conducted a proteomics screen using myc-tagged HERG transfected into cardiac (HL-1) and non-cardiac (human embryonic kidney 293) cell lines. A partial list of putative HERG-interacting proteins includes several known components of the cytosolic chaperone system, including Hsc70 (70-kDa heat shock cognate protein), Hsp90 (90-kDa heat shock protein), Hdj-2, Hop (Hsp-organizing protein), and Bag-2 (BCL-associated athanogene 2). In addition, two membrane-integrated proteins were identified, calnexin and FKBP38 (38-kDa FK506-binding protein, FKBP8). We show that FKBP38 immunoprecipitates and co-localizes with HERG in our cellular system. Importantly, small interfering RNA knock down of FKBP38 causes a reduction of HERG trafficking, and overexpression of FKBP38 is able to partially rescue the LQT2 trafficking mutant F805C. We propose that FKBP38 is a co-chaperone of HERG and contributes via the Hsc70/Hsp90 chaperone system to the trafficking of wild type and mutant HERG potassium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号