首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between the active sites of the bifunctional enzyme chorismate mutase-prephenate dehydratase has been examined. Steady-state kinetic investigations of the reactions with chorismate or prephenate as substrate and studies of the overall conversion of chorismate to phenylpyruvate indicate that there are two distinct active sites. One site is responsible for the mutase activity and the other for the dehydratase activity. Studies of the overall reaction using radioactive chorismate show that prephenate, which is formed from chorismate, dissociates from the mutase site and equilibrates with the bulk medium before combining at the dehydratase site. No evidence was obtained for direct channeling of prephenate from one site to the other, or for any strong interaction between the sites.  相似文献   

2.
J Turnbull  J F Morrison 《Biochemistry》1990,29(44):10255-10261
The inhibition of the bifunctional enzyme chorismate mutase-prephenate dehydrogenase by substrate analogues, by the end product, tyrosine, and by the protein modifying agent iodoacetate has been investigated. The purpose of the investigations was to determine if the two reactions catalyzed by the enzyme occur at a single active site or at two separate active sites. Evidence in support of the conclusion that the mutase and dehydrogenase reactions are catalyzed at two similar but distinct active sites comes from the following results: (1) A substrate analogue (endo-oxabicyclic diacid) that inhibits competitively the mutase reaction has no effect on the dehydrogenase reaction. (2) Malonic acid and several of its derivatives act as inhibitory analogues of chorismate in the mutase reaction and of prephenate in the dehydrogenase reaction. However, different dissociation constants for their interaction with the free enzyme are obtained from studies on the mutase and dehydrogenase reactions. (3) The kinetics of the inhibition by tyrosine of the mutase reaction in the presence of NAD differ from those of the dehydrogenase reaction. The results confirm that carboxymethylation with iodoacetate of one cysteine residue per subunit eliminates both mutase and dehydrogenase activities and show that the inactivation of the enzyme activities is due to iodoacetate functioning as an active site directed inhibitor.  相似文献   

3.
The inhibition of the bifunctional enzyme chorismate mutase-prephenate dehydrogenase (4-hydroxyphenylpyruvate synthase) by substrate analogues has been investigated at pH 6.0 with the aim of elucidating the spatial relationship that exists between the sites at which each reaction occurs. Several chorismate and adamantane derivatives, as well as 2-hydroxyphenyl acetate and diethyl malonate, act as linear competitive inhibitors with respect to chorismate in the mutase reaction and with respect to chorismate in the mutase reaction and with respect to prephenate in the dehydrogenase reaction. The similarity of the dissociation constants for the interaction of these compounds with the free enzyme, as determined from the mutase and dehydrogenase reactions, indicates that the reaction of these inhibitors at a single site prevents the binding of both chorismate and prephenate. However, not all the groups on the enzyme, which are responsible for the binding of these two substrates, can be identical. At lower concentrations, citrate or malonate prevents reaction of the enzyme with prephenate, but not with chorismate. Nevertheless, the combining sites for chorismate and prephenate are in such close proximity that the diethyl derivative of malonate prevents the binding of both substrates. The results lead to the proposal that the sites at which chorismate and prephenate react on hydroxyphenylpyruvate synthase share common features and can be considered to overlap.  相似文献   

4.
The enzyme chorismate mutase EcCM from Escherichia coli catalyzes one of the few pericyclic reactions in biology, the transformation of chorismate to prephenate. The isochorismate pyruvate lyase PchB from Pseudomonas aeroginosa catalyzes another pericyclic reaction, the isochorismate to salicylate transformation. Interestingly, PchB possesses weak chorismate mutase activity as well thus being able to catalyze two distinct pericyclic reactions in a single active site. EcCM and PchB possess very similar folds, despite their low sequence identity. Using molecular dynamics simulations of four combinations of the two enzymes (EcCM and PchB) with the two substrates (chorismate and isochorismate) we show that the electrostatic field due to EcCM at atoms of chorismate favors the chorismate to prephenate transition and that, analogously, the electrostatic field due to PchB at atoms of isochorismate favors the isochorismate to salicylate transition. The largest differences between EcCM and PchB in electrostatic field strengths at atoms of the substrates are found to be due to residue side chains at distances between 0.6 and 0.8 nm from particular substrate atoms. Both enzymes tend to bring their non‐native substrate in the same conformation as their native substrate. EcCM and to a lower extent PchB fail in influencing the forces on and conformations of the substrate such as to favor the other chemical reaction (isochorismate pyruvate lyase activity for EcCM and chorismate mutase activity for PchB). These observations might explain the difficulty of engineering isochorismate pyruvate lyase activity in EcCM by solely mutating active site residues.  相似文献   

5.
The effect of pH on chorismate mutase/prephenate dehydratase (chorismate pyruvate mutase/prephenate hydro-lyase (decarboxylating) EC 5.4.99.5/EC 4.2.1.51) from Escherichia coli K12 has been studied. While the maximum velocity of both activities is independent of pH, Km for chorismate or prephenate shows a complex pH dependence. Differences in mutase activity in acetate/phosphate/borate and citrate/phosphate/borate buffers were traced to inhibition by citrate. When a variety of analogues of citrate were tested as possible inhibitors of the enzyme, several were found to inhibit mutase and dehydratase activities to different extents, and by different mechanisms. Thus citrate competitively inhibits mutase activity, but inhibits dehydratase activity by either a non-competitive or an uncompetitive mechanism. Conversely, cis- and trans-aconitate competitively inhibit dehydratase activity, but are partially competitive inhibitors of mutase activity. The differential effects of these inhibitors on the two activities are consistent with the existence of two distinct active sites, but additionally suggest some degree of interconnection between them. The implications of these results for possible mechanisms of catalysis by chorismate mutase/prephenate dehydratase are discussed.  相似文献   

6.
E Heyde  J F Morrison 《Biochemistry》1978,17(8):1573-1580
Steady-state kinetic techniques have been used to investigate each of the reactions catalyzed by the bifunctional enzyme, chorismate mutase-prephenate dehydrogenase, from Aerobacter aerogenes. The results of steady-state velocity studies in the absence of products, as well as product and dead-end inhibition studies, suggest that the prephenate dehydrogenase reaction conforms to a rapid equilibrium random mechanism which involes the formation of two dead-end complexes, viz, enzyme-NADH-prephenate and enzyme-NAD+-hydroxyphenylpyruvate. Chorismate functions as an activator of the dehydrogenase while both prephenate and hydroxyphenylpyruvate acted as competitive inhibitors in the mutase reaction. By contrast. bpth NAD+ and NADH function as activators of the mutase. Values of the kinetic parameters associated with the mutase and dehydrogenase reactions have been determined and the results discussed in terms of possible relationships between the catalytic sites for the two reactions. The data appear to be consistent with the enzyme having either a single site at which both reactions occur or two separate sites which possess similar kinetic properties.  相似文献   

7.
The technique of affinity chromatography has been used to demonstrate that enzymes involved in the biosynthesis of tyrosine and phenylalanine in Escherichia coli undergo reversible interactions. Thus it has been shown that the aromatic amino acid aminotransferase (aromatic-amino-acid: 2-oxoglutarate amino-transferase, EC 2.6.1.57) reacts specifically with chorismate mutaseprephenate dehydrogenase (chorismate pyruvate mutase, EC 5.4.99.5 and prephenate: NAD+ oxidoreductase (decarboxylating), EC 1.3.1.12) in the absence of reactants and with chorimate mutase-prephenatedehydratase (prephenate hydro-lyase (decarboxylating), EC 4.2.1.51) in the presence of phyenylpyruvate. Tyrosine causes dissociation of the aminotransferase: mutasedehydrogenase complex while dissociation of the aminotransferase-mutasedehydratase complex occurs on omission of phenylpyruvate. Only the active form of chorismate mutase-prephenate dehydrogenase participates in complex formation.  相似文献   

8.
An inhibitor of prephenate dehydrogenase has been identified that has no effect on the chorismate mutase activity in the Escherichia coli T-protein, thus supporting the idea of two separate active sites.  相似文献   

9.
10.
Candida maltosa synthesizes phenylalanine and tyrosine only via phenylpyruvate and p-hydroxyphenylpyruvate. Tryptophan is absolutely necessary for the enzymatic reaction of chorismate mutase and prephenate dehydrogenase; activity of prephenate dehydratase can be increased 2.5-fold in the presence of tryptophan. Activation of the chorismate mutase, prephenate dehydratase and prephenate dehydrogenase by tryptophan is competitive with respect to chorismate and prephenate with Ka 0.06mM, 0.56mM and 1.7mM. In addition tyrosine is a competitive inhibitor of chorismate mutase (Ki = 0.55mM) and prephenate dehydrogenase (Ki = 5.5mM).  相似文献   

11.
Comparison of the calculated structures for the transition states of the two reactions catalysed by chorismate mutase prephenate dehydrogenase suggests that both reactions could be catalysed at a common active site. Kinetic data for the enzyme from Aerobacteraerogenes are consistent with this possibility. On the basis of these theoretical and experimental data a model for a common active site is developed. In the model, the transition state for each reaction is bound to the enzyme via both of the two substrate carboxyl groups, and can also interact with the coenzyme nicotinamide adenine dinucleotide through a hydrogen bond between the amide moiety of the nicotinamide ring and the hydroxyl group of the substrate. Chorismate, prephenate and 4-hydroxyphenylpyruvate in their ground states form the same hydrogen bond to the coenzyme, but are bound to the enzyme via a single carboxyl group only. The additional bond formed between the enzyme and the transition state structures thus provides the transition state stabilization required for catalysis of both reactions.  相似文献   

12.
The enzyme prephenate dehydrogenase catalyzes the oxidative decarboxylation of prephenate to 4-hydroxyphenylpyruvate for the biosynthesis of tyrosine. Prephenate dehydrogenases exist as either monofunctional or bifunctional enzymes. The bifunctional enzymes are diverse, since the prephenate dehydrogenase domain is associated with other enzymes, such as chorismate mutase and 3-phosphoskimate 1-carboxyvinyltransferase. We report the first crystal structure of a monofunctional prephenate dehydrogenase enzyme from the hyper-thermophile Aquifex aeolicus in complex with NAD+. This protein consists of two structural domains, a modified nucleotide-binding domain and a novel helical prephenate binding domain. The active site of prephenate dehydrogenase is formed at the domain interface and is shared between the subunits of the dimer. We infer from the structure that access to the active site is regulated via a gated mechanism, which is modulated by an ionic network involving a conserved arginine, Arg250. In addition, the crystal structure reveals for the first time the positions of a number of key catalytic residues and the identity of other active site residues that may participate in the reaction mechanism; these residues include Ser126 and Lys246 and the catalytic histidine, His147. Analysis of the structure further reveals that two secondary structure elements, beta3 and beta7, are missing in the prephenate dehydrogenase domain of the bifunctional chorismate mutase-prephenate dehydrogenase enzymes. This observation suggests that the two functional domains of chorismate mutase-prephenate dehydrogenase are interdependent and explains why these domains cannot be separated.  相似文献   

13.
The enzyme activities specified by the tyrA and pheA genes were studied in wildtype strain Salmonella typhimurium and in phenylalanine and tyrosine auxotrophs. As in Aerobacter aerogenes and Escherichia coli, the wild-type enzymes of Salmonella catalyze two consecutive reactions: chorismate --> prephenate --> 4-hydroxy-phenylpyruvate (tyrA), and chorismate --> prephenate --> phenylpyruvate (pheA). A group of tyrA mutants capable of interallelic complementation had altered enzymes which retained chorismate mutase T activity but lacked prephenate dehydrogenase. Similarly, pheA mutants (in which interallelic complementation does not occur) had one group with altered enzymes which retained chorismate mutase P but lacked prephenate dehydratase. Tyrosine and phenylalanine auxotrophs outside of these categories showed loss of both activities of their respective bifunctional enzyme. TyrA mutants which had mutase T were considerably derepressed in this activity by tyrosine starvation and consequently excreted prephenate. A new and specific procedure was developed for assaying prephenate dehydrogenase activity.  相似文献   

14.
大肠杆菌T蛋白含有三个结构域:分支酸变位酶、预苯酸脱氢酶和调节结构域。文章作者分段克隆了T蛋白的分支酸变位酶、预苯酸脱氢酶和调节结构域等片段,并对其进行了活性研究。研究发现,定位于N末端的分支酸变位酶结构域的比活性虽然不高,而稳定性较好;同时拥有调节结构域和预苯酸脱氢酶结构域的C末端片段,其预苯酸脱氢酶比活性的剩余百分率虽然高于分支酸变位酶结构域,但稳定性较差。作者进而表达了C末端切除38个氨基酸的T/1-336片段,发现预苯酸脱氢酶活性彻底丧失,而其分支酸变位酶和调节结构域的活性却基本保留。这说明T蛋白中分支酸变位酶结构域拥有一个相对独立、完整的结构,而预苯酸脱氢酶结构域和调节结构域交织共存,结构松散。  相似文献   

15.
Kinetic studies have been undertaken to elucidate the mechanism of the allosteric inhibition by tyrosine of the prephenate dehydrogenase activity of the bifunctional dimeric enzyme chorismate mutase-prephenate dehydrogenase. The effect of tyrosine on the initial velocity of the reactions in the presence of both prephenate and the alternative substrate, 1-carboxy-4-hydroxy-2-cyclohexene-1-propanoate, have been determined. In addition, investigations have been made of the effect of tyrosine on the inhibition of the reaction by the inhibitory analogues of prephenate, (4-hydroxyphenyl)pyruvate, and (carboxyethyl)-1,4-dihydrobenzoate. The results of the double inhibition experiments indicate clearly that the enzyme possesses a distinct allosteric site for the binding of tyrosine. The initial velocity data obtained with both substrates have been fitted to the rate equations that describe a wide range of models. From a comparison of the results obtained from studies with the two substrates, and with a knowledge of the value for the dissociation constant of the tyrosine-enzyme complex, definitive conclusions have been reached about the mechanism of the allosteric inhibition. It is concluded that tyrosine combines twice at allosteric sites and in an antisynergistic fashion, while prephenate reacts at both active sites of the dimeric enzyme as well as weakly at one of the allosteric sites. It appears that the latter is simple competition reaction that affects neither the binding of prephenate at the active site nor the rate of product formation. The model also predicts the formation of an active tyrosine-enzyme-prephenate complex that yields product at a much slower rate than does the enzyme-prephenate complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The isochorismate and salicylate synthases are members of the MST family of enzymes. The isochorismate synthases establish an equilibrium for the conversion chorismate to isochorismate and the reverse reaction. The salicylate synthases convert chorismate to salicylate with an isochorismate intermediate; therefore, the salicylate synthases perform isochorismate synthase and isochorismate-pyruvate lyase activities sequentially. While the active site residues are highly conserved, there are two sites that show trends for lyase-activity and lyase-deficiency. Using steady state kinetics and HPLC progress curves, we tested the “interchange” hypothesis that interconversion of the amino acids at these sites would promote lyase activity in the isochorismate synthases and remove lyase activity from the salicylate synthases. An alternative, “permute” hypothesis, that chorismate-utilizing enzymes are designed to permute the substrate into a variety of products and tampering with the active site may lead to identification of adventitious activities, is tested by more sensitive NMR time course experiments. The latter hypothesis held true. The variant enzymes predominantly catalyzed chorismate mutase–prephenate dehydratase activities, sequentially generating prephenate and phenylpyruvate, augmenting previously debated (mutase) or undocumented (dehydratase) adventitious activities.  相似文献   

17.
S Ahmad  R A Jensen 《FEBS letters》1987,216(1):133-139
The prephenate dehydrogenase component of the bifunctional T-protein (chorismate mutase:prephenate dehydrogenase) has been shown to utilize L-arogenate, a common precursor of phenylalanine and tyrosine in nature, as a substrate. Partially purified T-protein from Klebsiella pneumoniae and from Escherichia coli strains K 12, B, C and W was used to demonstrate the utilization of L-arogenate as an alternative substrate for prephenate in the presence of nicotinamide adenine dinucleotide as cofactor. The formation of L-tyrosine from L-arogenate by the T-protein dehydrogenase was confirmed by high-performance liquid chromatography. As expected of a common catalytic site, dehydrogenase activity with either prephenate or L-arogenate was highly sensitive to inhibition by L-tyrosine.  相似文献   

18.
The effects of a variety of structural analogs of L-tyrosine on the mutase and dehydrogenase activities of hydroxyphenylpyruvate synthase have been investigated. From these studies it is concluded that the alpha-NH3+ alpha-COO-, and the 4-OH groups are essential for binding of L-tyrosine as an inhibitor of the dehydrogenase and that the L configuration is also essential. Dixon plots for inhibition of the dehydrogenase activity by some of these analogs were nonlinear and could be described by a velocity equation that is the ratio of quadratic polynomials (a 2/1 function). Dixon plots for inhibition of the mutase by prephenate at low concentrations of chorismate could also be described by a 2/1 function, but at low concentrations of prephenate chorismate acts as an apparent hyperbolic activator of the dehydrogenase activity. Up to concentrations of 300 microM, L-tyrosine activates the mutase but acts as a potent inhibitor of the dehydrogenase. Such data for the dehydrogenase could not be described by a 2/1 function in 1/[prephenate] but could be fitted to the Hill equation with increasing concentrations of L-tyrosine in the presence of 1.0 mM NAD yielding increasing values for the Hill number (n): in the absence of L-tyrosine, n = 1.6 +/- 0.1; at 150 microM L-tyrosine, n = 2.1 +/- 0.1; at 300 microM L-tyrosine, n = 2.3 +/- 0.4. L-Tyrosine bears a close structural resemblance to both prephenate and hydroxyphenylpyruvate, and evidence is presented which is consistent with L-tyrosine acting as a competitive inhibitor with respect to prephenate of the dehydrogenase.  相似文献   

19.
Chorismate mutase from Streptomyces aureofaciens was purified 12-fold. This enzyme preparation did not show any activity when tested for anthranilate synthetase, prephenate dehydrogenase, or prephenate dehydratase. The catalytic activity of chorismate mutase has a broad optimum between pH 7 and 8. The initial velocity data followed regular Michaelis-Menten kinetics with a K(m) of 5.3 x 10(-4) M, and the molecular weight of the enzyme was determined by sucrose gradient centrifugation to be 50,000. Heat inactivation of chorismate mutase, which occurs above temperatures of 60 C, is reversible. The enzyme activity can be restored even when chorismate mutase is treated at the temperature of a boiling-water bath for 15 min. Heat-denatured and renatured enzymes showed the same Michaelis constant and the same molecular weight as the native enzyme. l-Phenylalanine, l-tyrosine, l-tryptophan, and metabolites of the aromatic amino acid pathway were tested as potential modifiers of chorismate mutase activity. The activity of the enzyme was inhibited by none of these substances. Chorismate mutase of S. aureofaciens was not repressed in cells grown in minimal medium supplemented with l-phenylalanine, l-tyrosine, or l-tryptophan.  相似文献   

20.
Investigations have been made at pH 6.0 of the effect of chorismate and adamantane derivatives on the mutase and dehydrogenase activities of hydroxyphenylpyruvate synthase from Escherichia coli. When used over a wide range of concentrations, chorismate 5,6-epoxide, chorismate 5,6-diol, adamantane-1,3-diacetate, adamantane-1-acetate, adamantane-1-carboxylate, and adamantane-1-phosphonate give rise to nonlinear plots of the reciprocal of the initial velocity of each reaction as a function of the inhibitor concentration. The inhibitors do not induce the enzyme to undergo polymerization and have only a small effect on the S20,w value of the enzyme as determined by using sucrose density gradient centrifugation. At low substrate concentration, low concentrations of adamantane-1-acetate cause activation of both the mutase and dehydrogenase activities while at higher concentrations this compound functions as an inhibitor. When chorismate and prephenate are varied over a wide range of concentrations, double-reciprocal plots of the data indicate that the reactions exhibit positive cooperativity. The addition of albumin eliminates the cooperative interactions associated with substrates but has little effect on those associated with inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号