首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Female (I/St X C57BL/St) F1 mice heterozygous at the sex-linked phosphorylase kinase deficiency locus (Phk) have phosphorylase kinase activities averaging 86% that of mice homozygous for the wild-type allele (C57BL/St), i.e., 72% greater than the sum of one-half the activities of the parental strains. Approximately one-half the phosphorylase kinase activity in the (I X C57BL) F1 muscle extracts had a stability at 42.5 C similar to that of the activity in C57BL extracts (t1/2 = 13.2 min); the other half of the activity in the F1 extracts was more labile (t1/2 = 3.9 min). Two species of phosphorylase kinase activity in F1 muscle extracts were also differentiated with an antiserum prepared in guinea pigs against purified rabbit skeletal muscle phosphorylase kinase. This anti-serum cross-reacted with phosphorylase kinase in C57BL muscle extracts but did not cross-react with skeletal muscle extracts of mice hemi- or homozygous for the mutant allele (I/LnJ). The guinea pig antiserum precipitated 52% as much protein from (I X C57BL)F1 muscle extracts compared to those of C57BL. However, an antiserum prepared against purified rabbit skeletal muscle phosphorylase kinase in the goat cross-reacted with the mutant phosphorylase kinase. The ratio C57BL:(I X C57BL)F1:I of immunoprecipitated protein from skeletal muscle extracts with this antiserum was 1:0.97:1.08. Polyacrylamide gel electrophoresis of the immunoprecipitates in the presence of 0.1% sodium dodecylsulfate showed three subunits for mouse phosphorylase kinase with molecular weights of 139,000, 118,000, and 41,000; these values are similar to the ones obtained with purified rabbit skeletal muscle phosphorylase kinase. These three subunits were also observed in immunoprecipitates from I/LnJ muscle extracts. These results offer substantial evidence (1) that in skeletal muscle extracts of mice heterozygous at the Phk locus the mutant phosphorylase kinase is active, (2) that the gene product of the mutant allele is an enzyme with an abnormal structure, and (3) that the phosphorylase kinase deficiency in I/LnJ skeletal muscle extracts is not the result of the absence of phosphorylase kinase or one of its subunits.  相似文献   

2.
Phosphorylase kinase phosphorylates the pure phospholipid phosphatidylinositol. Furthermore, it catalyzed phosphatidylinositol 4-phosphate formation using as substrate phosphatidylinositol that is associated with an isolated trypsin-treated Ca2+-transport adenosinetriphosphatase (ATPase) preparation from skeletal muscle sarcoplasmic reticulum. On this basis a fast and easy assay was developed that allows one to follow the phosphatidylinositol kinase activity during a standard phosphorylase kinase preparation. Both activities are enriched in parallel approximately to the same degree. Neither chromatography on DEAE-cellulose nor that on hydroxyapatite in the presence of 1 M KCl separates phosphatidylinositol kinase from phosphorylase kinase. The presence of a lipid kinase, phosphatidylinositol kinase, in phosphorylase kinase is not a general phenomenon; diacylglycerol kinase can be easily separated from phosphorylase kinase. Polyclonal anti-phosphorylase kinase antibodies as well as a monoclonal antibody directed specifically against the alpha subunit of phosphorylase kinase immunoprecipitate both phosphorylase kinase and phosphatidylinositol kinase.  相似文献   

3.
We have examined the effect of several flavonoids on the activity of phosphorylase kinase from rabbit skeletal muscle. From 14 flavonoids tested, the flavones quercetin and fisetin were found to be efficient inhibitors of nonactivated phosphorylase kinase when assayed at pH 8.2, causing 50% inhibition at a concentration of about 50 microM, while the flavanone hesperetin stimulated phosphorylase kinase activity about 2-fold when tested at 250 microM. The efficiency of quercetin in inhibiting the kinase is higher when the enzyme is stimulated either by ethanol or by alkaline pH. Both casein and troponin phosphorylation by phosphorylase kinase and the autophosphorylation of the kinase were inhibited by quercetin. In addition, quercetin was found to be a competitive inhibitor of ATP for the phosphorylation of phosphorylase b at pH 8.2. These observations suggest that the inhibitory effect of the flavone is directly on the phosphorylase kinase molecule. Trypsin-activated phosphorylase kinase was inhibited by quercetin and stimulated by hesperetin, as for the native enzyme.  相似文献   

4.
A four year-old Japanese boy with hepatomegaly and hypoglycemia has low activity of hepatic phosphorylase. A survey of enzymes involved in the phosphorylase activating system has revealed that liver phosphorylase kinase is deficient although adenosine 3′,5′-monophosphate (cyclic AMP)-dependent protein kinase and total phosphorylase measured in a mixture supplemented by rabbit muscle phosphorylase kinase show normal activities. The hormone receptor as well as adenyl cyclase system appears to be normal since cyclic AMP increases immediately after intravenous injection of glucagon. His muscle phosphorylase activating system is normal.  相似文献   

5.
When hearts from control and phosphorylase kinase-deficient (I strain) mice were perfused with 0.1 micrometer-DL-isoprenaline, there was a parallel increase in contraction, cyclic AMP concentration and troponin I phosphorylation. However, there was no increase in phosphorylase a in the I-strain hearts, whereas the control hearts showed a large increase. Assays of I-strain heart extracts showed a normal cyclic AMP-dependent protein kinase activity but no phosphorylase kinase activity. It is concluded that troponin I is phosphorylated in intact hearts by protein kinase and not phosphorylase kinase.  相似文献   

6.
Phosphorylation of rat liver glycogen synthase by phosphorylase kinase   总被引:2,自引:0,他引:2  
Phosphorylation of rat liver glycogen synthase by rabbit skeletal muscle phosphorylase kinase results in the incorporation of approximately 0.8-1.2 mol of PO4/subunit. Analyses of the tryptic peptides by isoelectric focusing and thin layer chromatography reveal the presence of two major 32P-labeled peptides. Similar results were obtained when the synthase was phosphorylated by rat liver phosphorylase kinase. This extent of phosphorylation does not result in a significant change in the synthase activity ratio. In contrast, rabbit muscle glycogen synthase is readily inactivated by rabbit muscle phosphorylase kinase; this inactivation is further augmented by the addition of rabbit muscle cAMP-dependent protein kinase or cAMP-independent synthase (casein) kinase-1. Addition of cAMP-dependent protein kinase after initial phosphorylation of liver synthase with phosphorylase kinase, however, does not result in an inactivation or additional phosphorylation. The lack of additive phosphorylation under this condition appears to result from the phosphorylation of a common site by these two kinases. Partial inactivation of liver synthase can be achieved by sequential phosphorylation with phosphorylase kinase followed by synthase (casein) kinase-1. Under this assay condition, the phosphate incorporation into the synthase is additively increased and the synthase activity ratio (-glucose-6-P/+glucose-6-P) is reduced from 0.95 to 0.6. Nevertheless, if the order of the addition of these two kinases is reversed, neither additive phosphorylation nor inactivation of the synthase is observed. Prior phosphorylation of the synthase by phosphorylase kinase transforms the synthase such that it becomes a better substrate for synthase (casein) kinase-1 as evidenced by a 2- to 4-fold increase in the rate of phosphorylation. This increased rate of phosphorylation of the synthase appears to result from the rapid phosphorylation of a site neighboring that previously phosphorylated by phosphorylase kinase.  相似文献   

7.
Rabbit muscle nonactivated phosphorylase kinase (EC 2.7.1.38) is converted to thiophosphate-activated phosphorylase kinase by cyclic AMP dependent protein kinase, Mg2+ and ATP-gamma-S/adenosine-5'-O-(s-thiotriphosphate)/. The formation of thiophosphate-activated phosphorylase kinase wal also observed in the protein-glycogen complex from skeletal muscle. This new form of kinase is resistant to the action of phosphatase and behaves as a competitive inhibitor in the dephosphorylation of phosphorylase alpha by phosphorylase phosphatase (Ki = 0.04 mg per ml). The fact that the inhibitory effect of thiophosphate-activated phosphorylase kinase is 3 times higher than in the case of nonactivated kinase, may explain the transient inhibition of phosphorylase phosphatase in the protein-glycogen complex. The use of activated (phosphorylated) phosphorylase kinase supports this assumption since it causes a delay in the dephosphorylation of phosphorylase alpha, i.e. the conversion of phosphorylase alpha into beta could start only after the dephosphorylation of activated phosphorylase kinase.  相似文献   

8.
Abstract— Phosphorylase b kinase (ATP: phosphorylase phosphotransferase; EC 2.7.1.38), the enzyme which converts phosphorylase b to phosphorylase a (α-1,4-glucan: orthophosphate glucosyltransferase; EC2.4.1.1) was examined in nerve tissue. Both phosphorylase and phosphorylase kinase were present in all nerve tissues tested, with central tissues about ten times as active as peripheral nerve. Exceptions were the superior cervical and stellate ganglia, tissues rich in synapses, which displayed activity similar to brain. Phosphorylase kinase in brain had properties similar to those of the enzyme in skeletal and cardiac muscle; it was activated in vitro by ATP and adenosine 3′,5′-monophosphate (cyclic AMP) and by Ca2+. Subconvulsive doses of insulin or of amphetamine administered to mice produced some activation of the enzyme. It is concluded that the mechanism for activation of phosphorylase in nerve tissue is similar to that in muscle.  相似文献   

9.
1. The properties of phosphorylase a, phosphorylase b, phosphorylase kinase and phosphorylase phosphatase present in a human haemolysate were investigated. The two forms of phosphorylase have the same affinity for glucose 1-phosphate but greatly differ in Vmax. Phosphorylase b is only partially stimulated by AMP, since, in the presence of the nucleotide, it is about tenfold less active than phosphorylase a. In a fresh human haemolysate phosphorylase is mostly in the b form; it is converted into phosphorylase a by incubation at 20degreesC, and this reaction is stimulated by glycogen and cyclic AMP. Once activated, the enzyme can be inactivated after filtration of the haemolysate on Sephadex G-25. This inactivation is stimulated by caffeine and glucose and inhibited by AMP and fluoride. The phosphorylase kinase present in the haemolysate can also be measured by the rate of activation of added muscle phosphorylase b, on addition of ATP and Mg2+. 2. The activity of phosphorylase kinase was measured in haemolysates obtained from a series of patients who had been classified as suffering from type VI glycogenosis. In nine patients, all boys, an almost complete deficiency of phosphorylase kinase was observed in the haemolysate and, when it could be assayed, in the liver. A residual activity, about 20% of normal, was found in the leucocyte fraction, whereas the enzyme activity was normal in the muscle. These patients suffer from the sex-linked phosphorylase kinase deficiency previously described by others. Two pairs of siblings, each time brother and sister, displayed a partial deficiency of phosphorylase kinase in the haemolysate and leucocytes and an almost complete deficiency in the liver. This is considered as being the autosomal form of phosphorylase kinase deficiency. Other patients were characterized by a low activity of total (a+b) phosphorylase and a normal or high activity of phosphorylase kinase in their haemolysate.  相似文献   

10.
Graded doses of ochratoxin A incorporated into the diet (0, 0.5, 1.0, 2.0, 4.0, and 8.0 micrograms/g) of broiler chickens significantly (P < 0.05) inhibited activity of protein kinase, the initiator enzyme of the glycogen phosphorylase system, in the livers at all dose levels. Only the highest dose, 8.0 micrograms/g, significantly reduced the total activity of phosphorylase kinase, which is activated by protein kinase. The total activity of phosphorylase, which is activated by phosphorylase kinase, was unaltered by ochratoxin A at any level. Additon of ochratoxin A to liver extracts control birds inhibited protein kinase but not phosphorylase kinase. When added to extracts of livers from control birds, cyclic adenosine 3',5'-monophosphate stimulated protein kinase but not phosphorylase kinase. The cyclic adenosine 3',5'-monophosphate had no effect when added to extracts from birds fed ochratoxin A. These results suggest that ochratoxin A affects primarily the cyclic adenosine 3',5'-monophosphate-dependent protein kinase which initiates the enzymatic cascade leading to glycogenolysis. Furthermore, these results conform an earlier assignment on morphological criteria of the glycogenosis of ochratoxicosis as a type X glycogen storage disease.  相似文献   

11.
The activities of glycogen phosphorylases a and b from the body wall musculature of the marine worm Arenicola marina (Annelida, Polychaeta) were determined after various periods of anoxia. Already under normoxic conditions one third of the total activity was produced from the a form. During anoxia the ratio of both forms as well as the total activity did not change. The activity of soluble phosphorylase kinase was comparatively low in this tissue 4.3 +/- 1.2 nmol . min-1 . (g wet wt.)-1; the fast twitching tail muscle of shrimps, e.g., had a 10-fold higher phosphorylase kinase activity, whereas phosphorylase activities in both tissues were about the same 2.3 +/- 0.5 mumol . min-1 . (g wet wt.)-1. Glycogen phosphorylase b was purified from the body wall tissue of the marine worm in one step by 5'-AMP-Sepharose resulting in a single protein band in SDS-PAGE. This preparation was accepted as substrate by the phosphorylase kinase from rabbit muscle but a complete phosphorylation could not be achieved. The molecular mass of native phosphorylase was approximately 216 kDa, that of subunits 95 kDa indicating that the enzyme exists as a dimer. There were no isozymes in this preparation, the RF-value (0.17) of the single band in PAGE ranged between those of the isozymes from mice hearts. The activities of phosphorylases b and a were similarly dependent on pH and temperature but differed drastically in the affinities to phosphate and AMP. In presence of 1 mM AMP the app. Km of phosphorylase a for phosphate was 16 mM, that of phosphorylase b above 100 mM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Purification and properties of phosphorylase from baker's yeast   总被引:2,自引:0,他引:2  
A rapid, reliable method for purification of phosphorylase, yielding 200-400 mg pure phosphorylase from 8 kg of pressed baker's yeast, is described. The enzyme is free of phosphorylase kinase activity but contains traces of phosphorylase phosphatase activity. Phosphorylase constitutes 0.5-0.8% of soluble protein in various strains of yeast assayed immunochemically. The subunit molecular weight (Mr) of yeast phosphorylase is around 100,000. The enzyme is composed of two subunits in various ratios, differing slightly in molecular weight and N-terminal sequence. Both are active. Only the enzyme species containing the larger subunit can form tetramers and higher oligomers. The activated enzyme is dimeric. Correlated with specific activity (1 to 110 U/mg), phosphorylase contained between less than 0.1 to 0.74 covalently bound phosphate per subunit. Inactive forms of phosphorylase could be activated by phosphorylase kinase and [gamma-32P]ATP with concomitant phosphorylation of a single threonine residue in the aminoterminal region of the large subunit. The small subunit was not labeled. The incorporated phosphate could be removed by yeast phosphorylase phosphatase, resulting in loss of activity of phosphorylase, which could be restored by ATP and phosphorylase kinase.  相似文献   

13.
A cDNA encoding the entire tau subunit of rabbit skeletal muscle phosphorylase kinase was reconstructed and inserted into a plasmid containing the Escherichia coli ptac promoter and a constructed plasmid containing the ptac promoter and bacterial chloramphenicol acetyl transferase (CAT) gene, respectively. A significant phosphorylase kinase activity was found, in the first case. In the second case, a fused protein containing 73 amino acids from the CAT protein was obtained. After renaturation, the CAT-tau subunit protein shows enzymatic activity similar to the HPLC-purified and renatured tau subunit.  相似文献   

14.
Liver glycogen degradation and phosphorylase activity were measured in normal and phosphorylase kinase-deficient (gsd/gsd) rats. During perfusion or ischaemia, gsd/gsd-rat livers showed a brisk glycogenolysis. There was also a small (1.9-fold) but significant transient increase in their phosphorylase alpha activity during ischaemia, despite their phosphorylase b kinase deficiency; it seems unlikely, however, that this was the main determinant of the glycogenolysis.  相似文献   

15.
Graded doses of ochratoxin A incorporated into the diet (0, 0.5, 1.0, 2.0, 4.0, and 8.0 micrograms/g) of broiler chickens significantly (P < 0.05) inhibited activity of protein kinase, the initiator enzyme of the glycogen phosphorylase system, in the livers at all dose levels. Only the highest dose, 8.0 micrograms/g, significantly reduced the total activity of phosphorylase kinase, which is activated by protein kinase. The total activity of phosphorylase, which is activated by phosphorylase kinase, was unaltered by ochratoxin A at any level. Additon of ochratoxin A to liver extracts control birds inhibited protein kinase but not phosphorylase kinase. When added to extracts of livers from control birds, cyclic adenosine 3',5'-monophosphate stimulated protein kinase but not phosphorylase kinase. The cyclic adenosine 3',5'-monophosphate had no effect when added to extracts from birds fed ochratoxin A. These results suggest that ochratoxin A affects primarily the cyclic adenosine 3',5'-monophosphate-dependent protein kinase which initiates the enzymatic cascade leading to glycogenolysis. Furthermore, these results conform an earlier assignment on morphological criteria of the glycogenosis of ochratoxicosis as a type X glycogen storage disease.  相似文献   

16.
Three forms of phosphorylase (I, II and III), two of which (I and II) were active in the presence of AMP and one (III) was active without AMP, were isolated from human skeletal muscles. The pI values for phosphorylases b(I) and b(II) were found to be identical (5.8-5.9). During chromatofocusing a low molecular weight protein (M(r) = 20-21 kDa, pI 4.8) was separated from phosphorylase b(II). This process was accompanied by an increase of the enzyme specific activity followed by its decline. During reconstitution of the complex the activity of phosphorylase b(II) returned to the initial level. Upon phosphorylation the amount of 32P incorporated into phosphorylase b(II) was 2 times as low as compared with rabbit phosphorylase b and human phosphorylase b(I). It may be supposed that in the human phosphorylase b(II) molecule one of the two subunits undergoes phosphorylation in vivo. This form of the enzyme is characterized by a greater affinity for glycogen and a lower sensitivity to allosteric effectors (AMP, glucose-6-phosphate, caffeine) compared with phosphorylase b(I). Thus, among the three phosphorylase forms obtained in this study, form b(II) is the most unusual one, since it is partly phosphorylated by phosphorylase kinase to form a complex with a low molecular weight protein which stabilizes its activity. A partially purified preparation of phosphorylase kinase was isolated from human skeletal muscles. The enzyme activity necessitates Ca2+ (c0.5 = 0.63 microM). At pH 6.8 the enzyme is activated by calmodulin (c0.5 = 15 microM). The enzyme activity ratio at pH 6.8/8.2 is equal to 0.18.  相似文献   

17.
In skeletal muscle of animals with the phosphorylase b kinase deficiency gene there is < 1% of the normal activity to convert phosphorylase b to a in the presence of Ca++, Mg++, and ATP (1). Correspondingly, there is < 1% of the normal activity to phosphorylate phosphorylase b. Nevertheless, under the same conditions, these extracts catalyze the phosphorylation of troponin at a rate 57% of normal. Phosphorylase b converting activity can be sedimented from skeletal muscle of control mice by centrifugation. This fraction isolated from I strain skeletal muscle extracts phosphorylates troponin at a rate 29–39% of the control. EGTA1 (15 mM) inhibits troponin phosphorylation by 50–60% in this fraction from both strains. The EGTA inhibition is reversed by 15 mM Ca++. Thus the phosphorylase b kinase in skeletal muscle of animals with the phosphorylase b kinase deficiency gene can phosphorylate troponin B, although it shows little or no activity with phosphorylase as a substrate. This observation is consistent with the normal muscle contractility of I strain animals.  相似文献   

18.
In the patients with glycogen storage disease (GSD) type VIa and different serum glucose response to glucagon, the activities of hepatic phosphorylase b kinase, phosphorylase a and b were estimated before and after the intravenous administration of glucagon. 3 min after the administration of glucagon an increase in the activities of phosphorylase b kinase and phosphorylase a was found in liver tissue of all patients except one. These enzymatic activities, however, did not exceed the values of these enzymes in the control liver biopsies without glucagon loading. After the intravenous administration of glucagon an unsuspected increase of phosphorylase b activity was observed in the control liver tissues and in patients with GSD type VIa, except one. In vitro investigations revealed that an increase of hepatic phosphorylase b activity occurs during its conversion to phosphorylase a. We suppose that this phosphorylase b represents a partially phosphorylated form of this enzyme (an intermediate form) that is due to the action of the active phosphorylase b kinase. The correlations between the activities of phosphorylase b kinase, phosphorylase a and an intermediate form of phosphorylase b and hepatic glycogen degradation after administration of glucagon has been discussed.  相似文献   

19.
1. Livers from gsd/gsd rats, which do not express phosphorylase kinase activity, also contain much less particulate type-1 protein phosphatases. In comparison with normal Wistar rats, the glycogen/microsomal fraction contained 75% less glycogen-synthase phosphatase and 60% less phosphorylase phosphatase activity. This was largely due to a lower amount of the type-1 catalytic subunit in the particulate fraction. In the cytosol, the synthase phosphatase activity was also 50% lower, but the phosphorylase phosphatase activity was equal. 2. Both Wistar rats and gsd/gsd rats responded to an intravenous injection of insulin plus glucose with an acute increase (by 30-40%) in the phosphorylase phosphatase activity in the liver cytosol. In contrast, administration of glucagon or vasopressin provoked a rapid fall (by about 25%) in the cytosolic phosphorylase phosphatase activity in Wistar rats, but no change occurred in gsd/gsd rats. 3. Phosphorylase kinase was partially purified from liver and subsequently activated. Addition of a physiological amount of the activated enzyme to a liver cytosol from Wistar rats decreased the V of the phosphorylase phosphatase reaction by half, whereas the non-activated kinase had no effect. The kinase preparations did not change the activity of glycogen-synthase phosphatase, which does not respond to glucagon or vasopressin. Furthermore, the phosphorylase phosphatase activity was not affected by addition of physiological concentrations of homogeneous phosphorylase kinase from skeletal muscle (activated or non-activated). 4. It appears therefore that phosphorylase kinase plays an essential role in the transduction of the effect of glucagon and vasopressin to phosphorylase phosphatase. However, this inhibitory effect either is specific for the hepatic phosphorylase kinase, or is mediated by an unidentified protein that is a specific substrate of phosphorylase kinase.  相似文献   

20.
Cyclic-AMP-dependent protein kinase catalyses the activation of phosphorylase kinase and the phosphorylation of two serine residues on the alpha subunit and beta subunit of phosphorylase kinase [Cohen, P., Watson, D.C. and Dixon, G.H. (1975)]. The dephosphorylation of phosphorylase kinase has been shown to be catalysed by two distinct enzymes, termed alpha-phosphorylase kinase phosphatase and beta-phosphorylase kinase phosphatase. These two enzymes show essentially absolute specificity towards the alpha and beta subunits respectively. The two phosphatases copurified through ethanol fractionation, DEAE-cellulose chromatography and ammonium sulphate precipitation, but were separated from each other by a gel filtration on Sephadex G-200. alpha-Phosphorylase kinase phosphatase was purified 500-fold from the ethanol precipitation step, and beta-phosphorylase kinase phosphatase 320-fold. The molecular weights estimated by gel filtration were 170--180 000 for alpha-phosphorylase kinase phosphatase and 75--80 000 for beta-phosphorylase kinase phosphatase. Since the activity of phosphorylase kinase correlates with the state of phosphorylation of the beta subunit (Cohen, P. (1974)), beta-phosphorylase kinase phosphatase is the enzyme which reverses the activation of phosphorylase kinase. alpha-Phosphorylase kinase phosphatase is an enzyme activity that has not been recognised previously. Since the role of the alpha-subunit phosphorylation is to stimulate the rate of dephosphorylation of the beta subunit (Cohen, P. (1974)), alpha-phosphorylase kinase phosphatase can be regarded as the enzyme which inhibits the reversal of the activation of phosphorylase kinase. The implications of these findings for the hormonal control of phosphorylase kinase activity by multisite phosphorylation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号