首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the budding yeast Saccharomyces cerevisiae, an actomyosin-based contractile ring is present during cytokinesis, as occurs in animal cells. However, the precise requirement for this structure during budding yeast cytokinesis has been controversial. Here we show that deletion of MYO1, the single myosin II gene, is lethal in a commonly used strain background. The terminal phenotype of myo1Delta is interconnected chains of cells, suggestive of a cytokinesis defect. To further investigate the role of Myo1p in cytokinesis, we conditionally disrupted Myo1 function by using either a dominant negative Myo1p construct or a strain where expression of Myo1p can be shut-off. Both ways of disruption of Myo1 function result in a failure in cytokinesis. Additionally, we show that a myo1Delta strain previously reported to grow nearly as well as the wild type contains a single genetic suppressor that alleviates the severe cytokinesis defects of myo1Delta. Using fluorescence time-lapse imaging and electron microscopy techniques, we show that cytokinesis in this strain is achieved through formation of multiple aberrant septa. Taken together, these results strongly suggest that the actomyosin ring is crucial for successful cytokinesis in budding yeast, but new cytokinetic mechanisms can evolve through genetic changes when myosin II function is impaired.  相似文献   

2.
The budding yeast IQGAP-like protein Cyk1p/Iqg1p localizes to the mother-bud junction during anaphase and has been shown to be required for the completion of cytokinesis. In this study, video microscopy analysis of cells expressing green fluorescent protein-tagged Cyk1p/Iqg1p demonstrates that Cyk1p/Iqg1p is a dynamic component of the contractile ring during cytokinesis. Furthermore, in the absence of Cyk1p/Iqg1p, myosin II fails to undergo the contraction-like size change at the end of mitosis. To understand the mechanistic role of Cyk1p/Iqg1p in actomyosin ring assembly and dynamics, we have investigated the role of the structural domains that Cyk1p/Iqg1p shares with IQGAPs. An amino terminal portion containing the calponin homology domain binds to actin filaments and is required for the assembly of actin filaments to the ring. This result supports the hypothesis that Cyk1p/Iqg1p plays a direct role in F-actin recruitment. Deletion of the domain harboring the eight IQ motifs abolishes the localization of Cyk1p/Iqg1p to the bud neck, suggesting that Cyk1p/Iqg1p may be localized through interactions with a calmodulin-like protein. Interestingly, deletion of the COOH-terminal GTPase-activating protein-related domain does not affect Cyk1p/Iqg1p localization or actin recruitment to the ring but prevents actomyosin ring contraction. In vitro binding experiments show that Cyk1p/Iqg1p binds to calmodulin, Cmd1p, in a calcium-dependent manner, and to Tem1p, a small GTP-binding protein previously found to be required for the completion of anaphase. These results demonstrate the critical function of Cyk1p/Iqg1p in regulating various steps of actomyosin ring assembly and cytokinesis.  相似文献   

3.
Anillin, an actin-binding protein localized at the cleavage furrow, is required for cytokinesis. Through an in vitro expression screen, we identified anillin as a substrate of the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that controls mitotic progression. We found that the levels of anillin fluctuate in the cell cycle, peaking in mitosis and dropping drastically during mitotic exit. Ubiquitination of anillin required a destruction-box and was mediated by Cdh1, an activator of APC/C. Overexpression of Cdh1 reduced the levels of anillin, whereas inactivation of APC/C(Cdh1) increased the half-life of anillin. Functionally, anillin was required for the completion of cytokinesis. In anillin knockdown cells, the cleavage furrow ingressed but failed to complete the ingression. At late cytokinesis, the cytosol and DNA in knockdown cells underwent rapid myosin-based oscillatory movement across the furrow. During this movement, RhoA and active myosin were absent from the cleavage furrow, and myosin was redistributed to cortical patches, which powers the random oscillatory movement. We concluded that anillin functions to maintain the localization of active myosin, thereby ensuring the spatial control of concerted contraction during cytokinesis.  相似文献   

4.
The anaphase-promoting complex (APC) is a ubiquitin ligase that controls progression through mitosis by targeting specific proteins for degradation. It is unclear whether the APC also contributes to the control of cytokinesis, the process that divides the cell after mitosis. We addressed this question in the yeast Saccharomyces cerevisiae by studying the effects of APC mutations on the actomyosin ring, a structure containing actin, myosin, and several other proteins that forms at the division site and is important for cytokinesis. In wild-type cells, actomyosin-ring constituents are removed progressively from the ring during contraction and disassembled completely thereafter. In cells lacking the APC activator Cdh1, the actomyosin ring contracts at a normal rate, but ring constituents are not disassembled normally during or after contraction. After cytokinesis in mutant cells, aggregates of ring proteins remain at the division site and at additional foci in other parts of the cell. A key target of APCCdh1 is the ring component Iqg1, the destruction of which contributes to actomyosin-ring disassembly. Deletion of CDH1 also exacerbates actomyosin-ring disassembly defects in cells with mutations in the myosin light-chain Mlc2, suggesting that Mlc2 and the APC employ independent mechanisms to promote ring disassembly during cytokinesis.  相似文献   

5.
Cytokinesis in Saccharomyces cerevisiae involves coordination between actomyosin ring contraction and septum formation and/or targeted membrane deposition. We show that Mlc1p, a light chain for Myo2p (type V myosin) and Iqg1p (IQGAP), is the essential light chain for Myo1p, the only type II myosin in S. cerevisiae. However, disruption or reduction of Mlc1p-Myo1p interaction by deleting the Mlc1p binding site on Myo1p or by a point mutation in MLC1, mlc1-93, did not cause any obvious defect in cytokinesis. In contrast, a different point mutation, mlc1-11, displayed defects in cytokinesis and in interactions with Myo2p and Iqg1p. These data suggest that the major function of the Mlc1p-Myo1p interaction is not to regulate Myo1p activity but that Mlc1p may interact with Myo1p, Iqg1p, and Myo2p to coordinate actin ring formation and targeted membrane deposition during cytokinesis. We also identify Mlc2p as the regulatory light chain for Myo1p and demonstrate its role in Myo1p ring disassembly, a function likely conserved among eukaryotes.  相似文献   

6.
The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved set of genes that mediate the transition from mitosis to G(1) by regulating mitotic cyclin degradation and the inactivation of cyclin-dependent kinase (CDK). Here, we demonstrate that, in addition to mitotic exit, S. cerevisiae MEN gene MOB1 is required for cytokinesis and cell separation. The cytokinesis defect was evident in mob1 mutants under conditions in which there was no mitotic-exit defect. Observation of live cells showed that yeast myosin II, Myo1p, was present in the contractile ring at the bud neck but that the ring failed to contract and disassemble. The cytokinesis defect persisted for several mitotic cycles, resulting in chains of cells with correctly segregated nuclei but with uncontracted actomyosin rings. The cytokinesis proteins Cdc3p (a septin), actin, and Iqg1p/ Cyk1p (an IQGAP-like protein) appeared to correctly localize in mob1 mutants, suggesting that MOB1 functions subsequent to actomyosin ring assembly. We also examined the subcellular distribution of Mob1p during the cell cycle and found that Mob1p first localized to the spindle pole bodies during mid-anaphase and then localized to a ring at the bud neck just before and during cytokinesis. Localization of Mob1p to the bud neck required CDC3, MEN genes CDC5, CDC14, CDC15, and DBF2, and spindle pole body gene NUD1 but was independent of MYO1. The localization of Mob1p to both spindle poles was abolished in cdc15 and nud1 mutants and was perturbed in cdc5 and cdc14 mutants. These results suggest that the MEN functions during the mitosis-to-G(1) transition to control cyclin-CDK inactivation and cytokinesis.  相似文献   

7.
In budding yeast the final stages of the cell division cycle, cytokinesis and cell separation, are distinct events that require to be coupled, both together and with mitotic exit. Here we demonstrate that mutations in genes of the mitotic exit network (MEN) prevent cell separation and are synthetically lethal in combination with both cytokinesis and septation defective mutations. Analysis of the synthetic lethal phenotypes reveals that Iqg1p functions in combination with the MEN components, Tem1p, Cdc15p Dbf20p and Dbf2p to govern the re-polarization of the actin cytoskeleton to either side of the bud neck. In addition phosphorylation of the conserved PCH protein, Hof1p, is dependent upon these activities and requires actin ring assembly. Recruitment of Dbf2p to the bud neck is dependent upon actin ring assembly and correlates with Hof1p phosphorylation. Failure to phosphorylate Hof1p results in the increased stability of the protein and its persistence at the bud neck. These data establish a mechanistic dependency of cell separation upon an intermediate step requiring actomyosin ring assembly.  相似文献   

8.
Cytokinesis in animal cells is accomplished through constriction of an actomyosin ring [1] [2] [3], which must assemble at the correct time and place in order to ensure proper division of genetic material and organelles. Budding yeast is a useful model system for determining the biochemical pathway of contractile ring assembly. The budding yeast IQGAP-like protein, Cyk1/Iqg1p, has multiple roles in the assembly and contraction of the actomyosin ring [4] [5] [6]. Previously, the IQ motifs of Cyk1/Iqg1p were shown to be required for the localization of this protein at the bud neck [6]. We have investigated the binding partner of the IQ motifs, which are predicted to interact with calmodulin-like proteins. Mlc1p was originally identified as a light chain for a type V myosin, Myo2p; however, a cytokinesis defect associated with disruption of the MLC1 gene suggested that the essential function of Mlc1p may involve interactions with other proteins [7]. We show that Mlc1p binds the IQ motifs of Cyk1/Iqg1p and present evidence that this interaction recruits Cyk1/Iqg1p to the bud neck. Immunofluorescence staining shows that Mlc1p is localized to sites of polarized cell growth as well as the bud neck before and independently of Cyk1p. These results demonstrate that Mlc1p is important for the assembly of the actomyosin ring in budding yeast and that this function is mediated through interaction with Cyk1/Iqg1p.  相似文献   

9.
Iqg1p is a component of the actomyosin contractile ring that is required for actin recruitment and septum deposition. Cells lacking Iqg1p function have an altered bud-neck structure and fail to form a functional actomyosin contractile ring resulting in a block to cytokinesis and septation. Here it is demonstrated that increased expression of the actin cytoskeleton associated protein Bsp1p bypasses the requirement for contractile ring function. This also correlates with reduced bud-neck width and remedial septum formation. Increased expression of this protein in a temperature-sensitive iqg1-1 background causes remedial septum formation at the bud neck that is reliant upon chitin synthase III activity and restores cell separation. The observed suppression correlates with a restoration of normal bud-neck structure. While Bsp1p is a component of the contractile ring, its recruitment to the bud neck is not required for the observed suppression. Loss of Bsp1p causes a brief delay in the redistribution of the actin cytoskeleton normally observed at the end of actin ring contraction. Compromise of Iqg1p function, in the absence of Bsp1p function, leads to a profound change in the distribution of actin and the pattern of cell growth accompanied by a failure to complete cytokinesis and cell separation.  相似文献   

10.
Cytokinesis requires the polarization of the actin cytoskeleton, the secretion machinery, and the correct positioning of the division axis. Budding yeast cells commit to their cytokinesis plane by choosing a bud site and polarizing their growth. Iqg1p (Cyk1p) was previously implicated in cytokinesis (Epp and Chant, 1997; Lippincott and Li, 1998; Osman and Cerione, 1998), as well as in the establishment of polarity and protein trafficking (Osman and Cerione, 1998). To better understand how Iqg1p influences these processes, we performed a two-hybrid screen and identified the spatial landmark Bud4p as a binding partner. Iqg1p can be coimmunoprecipitated with Bud4p, and Bud4p requires Iqg1p for its proper localization. Iqg1p also appears to specify axial bud-site selection and mediates the proper localization of the septin, Cdc12p, as well as binds and helps localize the secretion landmark, Sec3p. The double mutants iqg1Deltasec3Delta and bud4Deltasec3Delta display defects in polarity, budding pattern and cytokinesis, and electron microscopic studies reveal that these cells have aberrant septal deposition. Taken together, these findings suggest that Iqg1p recruits landmark proteins to form a targeting patch that coordinates axial budding with cytokinesis.  相似文献   

11.
Vrp1p/verprolin/End5p is a Saccharomyces cerevisiae proline-rich protein, structurally and functionally related to human Wiskott–Aldrich syndrome protein-interacting protein. Vrp1p is required for viability at 37°C, but not 24°C. Here, we show that loss of Vrp1p ( vrp1Δ ) leads to a 3–4-fold delay in cytokinesis, wide bud necks, abnormal actomyosin rings, and aberrant septa even at 24°C. Like other mutations affecting the actomyosin ring, vrp1Δ is synthetic lethal with deletion of HOF1 (or CYK2 ), which encodes a protein related to mammalian proline serine threonine phosphatase-interacting protein and Schizosaccharomyces pombe Cdc15p required for an actomyosin ring-independent pathway of cytokinesis in S. cerevisiae . At 37°C, vrp1Δ cells rapidly cease dividing and exhibit a novel terminal phenotype: a single large bud, two well-separated nuclei, and an interphase microtubule array. The arrested cells have a persistent ring containing both actin and myosin at the bud neck. Many also exhibit some polarisation of cortical actin patches to the bud neck. Vrp1p binds an SH3-domain-containing fragment of Hof1p in vitro . Vrp1p is required in vivo for Hof1p relocalisation to a single ring at the bud neck prior to cytokinesis at 37°C, but not at 24°C. Vrp1p thus acts in both actomyosin ring formation and function, as well as in Hof1p localisation during cytokinesis.  相似文献   

12.
Cytokinesis separates cells by contraction of a ring composed of filamentous actin (F-actin) and type II myosin. Iqg1, an IQGAP family member, is an essential protein in Saccharomyces cerevisiae required for assembly and contraction of the actomyosin ring. Localization of F-actin to the ring occurs only after anaphase and is mediated by the calponin homology domain (CHD) of Iqg1, but the regulatory mechanisms that temporally restrict actin ring assembly are not well defined. We tested the hypothesis that dephosphorylation of four perfect cyclin-dependent kinase (Cdk) sites flanking the CHD promotes actin ring formation, using site-specific alanine mutants. Cells expressing the nonphosphorylatable iqg1-4A allele formed actin rings before anaphase and exhibited defects in myosin contraction and cytokinesis. The Cdc14 phosphatase is required for normal cytokinesis and acts on specific Cdk phosphorylation sites. Overexpression of Cdc14 resulted in premature actin ring assembly, whereas inhibition of Cdc14 function prevented actin ring formation. Cdc14 associated with Iqg1, dependent on several CHD-flanking Cdk sites, and efficiently dephosphorylated these sites in vitro. Of importance, the iqg1-4A mutant rescued the inability of cdc14-1 cells to form actin rings. Our data support a model in which dephosphorylation of Cdk sites around the Iqg1 CHD by Cdc14 is both necessary and sufficient to promote actin ring formation. Temporal control of actin ring assembly by Cdk and Cdc14 may help to ensure that cytokinesis onset occurs after nuclear division is complete.  相似文献   

13.
We have found that key mitotic regulators show distinct patterns of degradation during exit from mitosis in human cells. Using a live-cell assay for proteolysis, we show that two of these regulators, polo-like kinase 1 (Plk1) and Aurora A, are degraded at different times after the anaphase-promoting complex/cyclosome (APC/C) switches from binding Cdc20 to Cdh1. Therefore, events in addition to the switch from Cdc20 to Cdh1 control the proteolysis of APC/C(Cdh1) substrates in vivo. We have identified a putative destruction box in Plk1 that is required for degradation of Plk1 in anaphase, and have examined the effect of nondegradable Plk1 on mitotic exit. Our results show that Plk1 proteolysis contributes to the inactivation of Plk1 in anaphase, and that this is required for the proper control of mitotic exit and cytokinesis. Our experiments reveal a role for APC/C-mediated proteolysis in exit from mitosis in human cells.  相似文献   

14.
Iwase M  Luo J  Bi E  Toh-e A 《Genetics》2007,177(1):215-229
In Saccharomyces cerevisiae, five septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1/Sep7) form the septin ring at the bud neck during vegetative growth. We show here that disruption of SHS1 caused cold-sensitive growth in the W303 background, with cells arrested in chains, indicative of a cytokinesis defect. Surprisingly, the other four septins appeared to form an apparently normal septin ring in shs1Delta cells grown under the restrictive condition. We found that Myo1 and Iqg1, two components of the actomyosin contractile ring, and Cyk3, a component of the septum formation, were either delocalized or mislocalized in shs1Delta cells, suggesting that Shs1 plays supportive roles in cytokinesis. We also found that deletion of SHS1 enhanced or suppressed the septin defect in cdc10Delta and cdc11Delta cells, respectively, suggesting that Shs1 is involved in septin organization, exerting different effects on septin-ring assembly, depending on the composition of the septin subunits. Furthermore, we constructed an shs1-100c allele that lacks the coding sequence for the C-terminal 32 amino acids. This allele still displayed the genetic interactions with the septin mutants, but did not show cytokinesis defects as described above, suggesting that the roles of Shs1 in septin organization and cytokinesis are separable.  相似文献   

15.
The F-actin-based molecular motor myosin II is involved in a variety of cellular processes such as muscle contraction, cell motility, and cytokinesis. In recent years, a family of myosin II-specific cochaperones of the UCS family has been identified from work with yeasts, fungi, worms, and humans. Biochemical analyses have shown that a complex of Hsp90 and the Caenorhabditis elegans UCS domain protein UNC-45 prevent myosin head aggregation, thereby allowing it to assume a proper structure. Here we demonstrate that a temperature-sensitive mutant of the fission yeast Hsp90 (Swo1p), swo1-w1, is defective in actomyosin ring assembly at the restrictive temperature. Two alleles of swo1, swo1-w1 and swo1-26, showed synthetic lethality with a specific mutant allele of the fission yeast type II myosin head, myo2-E1, but not with two other mutant alleles of myo2 or with mutations affecting 14 other genes important for cytokinesis. swo1-w1 also showed a strong genetic interaction with rng3-65, a gene encoding a mutation in the fission yeast UCS domain protein Rng3p, which has previously been shown to be important for myosin II assembly. A similar deleterious effect was found when myo2-E1, swo1-w1, and rng3-65 were pharmacologically treated with geldanamycin to partially inhibit Hsp90 function. Interestingly, Swo1p-green fluorescent protein is detected at the improperly assembled actomyosin rings in myo2-E1 but not in a wild-type strain. Yeast two-hybrid and coimmunoprecipitation analyses verified interactions between Rng3p and the myosin head domain as well as interactions between Rng3p and Swo1p. Our analyses of Myo2p, Swo1p, and the UCS domain protein Rng3p establish that Swo1p and Rng3p collaborate in vivo to modulate myosin II function.  相似文献   

16.
Korinek WS  Bi E  Epp JA  Wang L  Ho J  Chant J 《Current biology : CB》2000,10(15):947-950
Cytokinesis requires the wholesale reorganization of the cytoskeleton and secretion to complete the division of one cell into two. In the budding yeast Saccharomyces cerevisiae, the IQGAP-related protein Iqg1 (Cyk1) promotes cytokinetic actin ring formation and is required for cytokinesis and viability [1-3]. As the actin ring is not essential for cytokinesis or viability, Iqg1 must act by another mechanism [4]. To uncover this mechanism, a screen for high-copy suppressors of the iqg1 lethal phenotype was performed. CYK3 suppressed the requirement for IQG1 in viability and cytokinesis without restoration of the actin ring, demonstrating that CYK3 promotes cytokinesis through an actomyosin-ring-independent pathway. CYK3 encodes a novel SH3-domain protein that was found in association with the actin ring and the mother-bud neck. cyk3 null cells had misshapen mother-bud necks and were deficient in cytokinesis. In the cyk3 null strain, actin rearrangements associated with cytokinesis appeared normal, suggesting that the phenotype reflects a defect in secretory targeting or septal synthesis. Deletion of either cyk3 or hof1 alone results in a mild cytokinetic phenotype [5-7], but deletion of both genes resulted in lethality and a complete cytokinetic block, suggesting overlapping function. Thus, Cyk3 appears to be important for cytokinesis and acts potentially downstream of Iqg1.  相似文献   

17.
ABSTRACT: BACKGROUND: Yeast has numerous mechanisms to survive stress. Deletion of myosin type II (myo1Delta) in Saccharomyces cerevisiae results in a cell that has defective cytokinesis. To survive this genetically induced stress, this budding yeast up regulates the PKC1 cell wall integrity pathway (CWIP). More recently, our work indicated that TOR, another stress signaling pathway, was down regulated in myo1Delta strains. Since negative signaling by TOR is known to regulate PKC1, our objectives in this study were to understand the cross-talk between the TOR and PKC1 signaling pathways and to determine if they share upstream regulators for mounting the stress response in myo1Delta strains RESULTS: Here we proved that TORC1 signaling was down regulated in the myo1Delta strain. While a tor1Delta mutant strain had increased viability relative to myo1Delta, a combined myo1Deltator1Delta mutant strain showed significantly reduced cell viability. Synthetic rescue of the tor2-21ts lethal phenotype was observed in the myo1Delta strain in contrast to the chs2Delta strain, a chitin synthase II null mutant that also activates the PKC1 CWIP and exhibits cytokinesis defects very similar to myo1Delta, where the rescue effect was not observed. We observed two pools of Slt2p, the final Mitogen Activated Protein Kinase (MAPK) of the PKC1 CWIP; one pool that is up regulated by heat shock and one that is up regulated by the myo1Delta stress. The cell wall stress sensor WSC1 that activates PKC1 CWIP under other stress conditions was shown to act as a negative regulator of TORC1 in the myo1Delta mutant. Finally, the repression of TORC1 was inversely correlated with the activation of PKC1 in the myo1Delta strain. CONCLUSIONS: Regulated expression of TOR1 was important in the activation of the PKC1 CWIP in a myo1Delta strain and hence its survival. We found evidence that the PKC1 and TORC1 pathways share a common upstream regulator associated with the cell wall stress sensor WSC1. Surprisingly, essential TORC2 functions were not required in the myo1Delta strain. By understanding how yeast mounts a concerted stress response, one can further design pharmacological cocktails to undermine their ability to adapt and to survive.  相似文献   

18.
Li CR  Wang YM  Wang Y 《The EMBO journal》2008,27(22):2998-3010
Cyclin-dependent kinases (CDKs) drive and coordinate multiple cell-cycle events, including construction and contraction of the actomyosin ring during cytokinesis. However, it remains unclear whether CDKs regulate cytokinesis by directly targeting components of the ring. In a search for proteins containing consensus CDK phosphorylation sites in Candida albicans, we found that the IQGAP Iqg1 contains two dense clusters of 19 such sites flanking the actin-interacting CH domain. Here, we show that Iqg1 is indeed a phosphoprotein that undergoes cell-cycle-dependent phosphorylation and can be phosphorylated by purified Clb-Cdc28 kinases in vitro. Mass spectrometry identified several phosphoserine and phosphothreonine residues among these CDK sites. Mutating 15 of the CDK phosphorylation sites with alanine markedly reduced Iqg1 phosphorylation in vivo. The 15A mutation greatly stabilized Iqg1, caused both premature assembly and delayed disassembly of the actomyosin ring, blocked Iqg1 interaction with the actin-nucleating proteins Bni1 and Bnr1, and resulted in defects in cytokinesis. Our data therefore strongly support the idea that the Cdc28 CDK regulates cytokinesis partly by directly phosphorylating the actomyosin ring component Iqg1.  相似文献   

19.
Cytokinesis in animal and fungal cells utilizes a contractile actomyosin ring (AMR). However, how myosin II is targeted to the division site and promotes AMR assembly, and how the AMR coordinates with membrane trafficking during cytokinesis, remains poorly understood. Here we show that Myo1 is a two-headed myosin II in Saccharomyces cerevisiae, and that Myo1 localizes to the division site via two distinct targeting signals in its tail that act sequentially during the cell cycle. Before cytokinesis, Myo1 localization depends on the septin-binding protein Bni5. During cytokinesis, Myo1 localization depends on the IQGAP Iqg1. We also show that the Myo1 tail is sufficient for promoting the assembly of a "headless" AMR, which guides membrane deposition and extracellular matrix remodeling at the division site. Our study establishes a biphasic targeting mechanism for myosin II and highlights an underappreciated role of the AMR in cytokinesis beyond force generation.  相似文献   

20.
At mitosis, cells undergo drastic alterations in morphology and cytoskeletal organization including cell rounding during prophase, mitotic spindle assembly during prometaphase and metaphase, chromatid segregation in anaphase, and cytokinesis during telophase. It is well established that myosin II is a motor responsible for cytokinesis. Recent reports have indicated that myosin II is also involved in spindle assembly and karyokinesis. In this review, we summarize current understanding of the functions of myosin II in mitosis and cytokinesis of higher eukaryotes, and discuss the roles of possible upstream molecules that control myosin II in these mitotic events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号