首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Villocarines A-D (1-4), four new indole alkaloids have been isolated from the leaves of Uncaria villosa (Rubiaceae) and their structures were elucidated by 2D NMR methods and chemical correlations. Villocarine A (1) showed vasorelaxation activity against rat aortic ring and showed inhibition effect on vasocontraction of depolarized aorta with high concentration potassium, and also inhibition effect on phenylephrine (PE)-induced contraction in the presence of nicardipine in a Ca(2+) concentration-dependent manner. The vasorelaxant effect by 1 might be attributed mainly to inhibition of calcium influx from extracellular space through voltage-dependent calcium channels (VDC) and/or receptor-operated Ca(2+)-channels (ROC), and also partly mediated through the increased release of NO from endothelial cells and opening of voltage-gated K(+)-channels.  相似文献   

2.
Gastric acid secretion is not only stimulated via the classical known neuronal and hormonal pathways but also by the Ca(2+)-Sensing Receptor (CaSR) located at the basolateral membrane of the acid-secretory gastric parietal cell. Stimulation of CaSR with divalent cations or the potent agonist Gd(3+) leads to activation of the H(+)/K(+)-ATPase and subsequently to gastric acid secretion. Here we investigated the intracellular mechanism(s) mediating the effects of the CaSR on H(+)/K(+)-ATPase activity in freshly isolated human gastric glands. Inhibition of heterotrimeric G-proteins (G(i) and G(o)) with pertussis toxin during stimulation of the CaSR with Gd(3+) only partly reduced the observed stimulatory effect. A similar effect was observed with the PLC inhibitor U73122. The reduction of the H(+)/K(+)-ATPase activity measured after incubation of gastric glands with BAPTA-AM, a chelator of intracellular Ca(2+), showed that intracellular Ca(2+) plays an important role in the signalling cascade. TMB-8, a ER Ca(2+)store release inhibitor, prevented the stimulation of H(+)/K(+)-ATPase activity. Also verapamil, an inhibitor of L-type Ca(2+)-channels reduced stimulation suggesting that both the release of intracellular Ca(2+) from the ER as well as Ca(2+) influx into the cell are involved in CaSR-mediated H(+)/K(+)-ATPase activation. Chelerythrine, a general inhibitor of protein kinase C, and Go 6976 which selectively inhibits Ca(2+)-dependent PKC(alpha) and PKC(betaI)-isozymes completely abolished the stimulatory effect of Gd(3+). In contrast, Ro 31-8220, a selective inhibitor of the Ca(2+)-independent PKCepsilon and PKC-delta isoforms reduced the stimulatory effect of Gd(3+) only about 60 %. On the other hand, activation of PKC with DOG led to an activation of H(+)/K(+)-ATPase activity which was only about 60 % of the effect observed with Gd(3+). Incubation of the parietal cells with PD 098059 to inhibit ERK1/2 MAP-kinases showed a significant reduction of the Gd(3+) effect. Thus, in the human gastric parietal cell the CaSR is coupled to pertussis toxin sensitive heterotrimeric G-Proteins and requires calcium to enhance the activity of the proton-pump. PLC, ERK 1/2 MAP-kinases as well as Ca(2+) dependent and Ca(2+)-independent PKC isoforms are part of the down-stream signalling cascade.  相似文献   

3.
alpha-Latrotoxin, a presynaptic neurotoxin from the venom of Latrodectus mactans tredecimguttatus, induces massive [3H]GABA release from rat brain synaptosomes as a result of interaction with either Ca(2+)-dependent (neurexin 1 alpha or Ca(2+)-independent (latrophilin) membrane receptor. The main aim of the study was to elucidate whether the binding of alpha-latrotoxin to different types of receptors led to [3H]GABA secretion from one pool or in each case the source of neurotransmitter differs: in the presence of Ca2+ exocytosis is induced, while in the absence of Ca(2+)--outflow by mobile membrane GABA transporter from cytoplasm. We examined the effect of the depletion of cytosolic [3H]GABA pool by competitive inhibitors of the GABA transporter (nipecotic acid and 2,4-diaminobutyric acid) on the alpha-latrotoxin-stimulated neurotransmitter release. We also compared the influence of these agents on neurosecretion, evoked by depolarization with that evoked by alpha-latrotoxin. Depolarization was stimulated by 4-aminopyridine in the Ca(2+)-containing saline and high KCl in Ca(2+)-free medium. In synaptosomes treated with nipecotic acid unstimulated [3H]GABA release was significantly augmented and high KCl-evoked Ca(2+)-independent [3H]GABA release was essentially inhibited. But under the same conditions neurosecretion stimulated by alpha-latrotoxin greatly raised with respect to the control response. The similar results were obtained with the synaptosomes treated with 2,4-diaminobutyric acid. Another way to determine which of GABA pool is the target of alpha-latrotoxin action lay in analysis of the toxin effects on the preliminary depolarized synaptosomes. alpha-Latrotoxin influence was diminished by the preceding depolarization by 4-aminopyridine in Ca2+ presence. But after the high KCl stimulation effect of alpha-latrotoxin didn't change. These data suggest that alpha-latrotoxin triggers neurotransmitter release from synaptic vesicles via exocytosis. We suppose that the type of membrane receptor does not determine the mechanism of GABA release evoked by the toxin.  相似文献   

4.
Ca(2+)-loaded calmodulin normally inhibits multiple Ca(2+)-channels upon dangerous elevation of intracellular Ca(2+) and protects cells from Ca(2+)-cytotoxicity, so blocking of calmodulin should theoretically lead to uncontrolled elevation of intracellular Ca(2+). Paradoxically, classical anti-psychotic, anti-calmodulin drugs were noted here to inhibit Ca(2+)-uptake via the vanilloid inducible Ca(2+)-channel/inflamatory pain receptor 1 (TRPV1), which suggests that calmodulin inhibitors may block pore formation and Ca(2+) entry. Functional assays on TRPV1 expressing cells support direct, dose-dependent inhibition of vanilloid-induced (45)Ca(2+)-uptake at microM concentrations: calmidazolium (broad range) > or = trifluoperazine (narrow range) chlorpromazine/amitriptyline>fluphenazine>W-7 and W-13 (only partially). Most likely a short acidic domain at the pore loop of the channel orifice functions as binding site either for Ca(2+) or anti-calmodulin drugs. Camstatin, a selective peptide blocker of calmodulin, inhibits vanilloid-induced Ca(2+)-uptake in intact TRPV1(+) cells, and suggests an extracellular site of inhibition. TRPV1(+), inflammatory pain-conferring nociceptive neurons from sensory ganglia, were blocked by various anti-psychotic and anti-calmodulin drugs. Among them, calmidazolium, the most effective calmodulin agonist, blocked Ca(2+)-entry by a non-competitive kinetics, affecting the TRPV1 at a different site than the vanilloid binding pocket. Data suggest that various calmodulin antagonists dock to an extracellular site, not found in other Ca(2+)-channels. Calmodulin antagonist-evoked inhibition of TRPV1 and NMDA receptors/Ca(2+)-channels was validated by microiontophoresis of calmidazolium to laminectomised rat monitored with extracellular single unit recordings in vivo. These unexpected findings may explain empirically noted efficacy of clinical pain adjuvant therapy that justify efforts to develop hits into painkillers, selective to sensory Ca(2+)-channels but not affecting motoneurons.  相似文献   

5.
Presynaptic neurotoxin alpha-latrotoxin, from the venom of Latrodectus mactans tredecimguttatus, causes massive [(3)H]GABA release from rat brain synaptosomes, irrespective of calcium presence in the extracellular medium. Whether the binding of alpha-latrotoxin to Ca(2+)-dependent (neurexin 1 alpha) or to Ca(2+)-independent (latrophilin) receptor triggers [(3)H]GABA release by the same mechanisms or different ones, inducing either exocytotic process or outflow by mobile membrane GABA transporter, is unknown. We examined alpha-latrotoxin-evoked [(3)H]GABA release from synaptosomes which cytosolic [(3)H]GABA pool was depleted either by applying competitive inhibitors of the GABA transporter, nipecotic acid and 2,4-diaminobutyric acid, or by permeation with digitonin. We also compared the effect of the GABA transporter inhibitors on depolarisation-evoked and alpha-latrotoxin-evoked [(3)H]GABA release using as depolarising agents 4-aminopyridine and high KCl in the Ca(2+)-containing and in Ca(2+)-free medium, respectively. Incubation of synaptosomes with nipecotic acid induced the essential acceleration of unstimulated [(3)H]GABA release and deep inhibition of high KCl-evoked Ca(2+)-independent [(3)H]GABA release. In contrast, at the similar conditions the effect of alpha-latrotoxin was greatly augmented with respect to the control response. Another way to assay what GABA pool was involved in alpha-latrotoxin-induced release lays in an analysis of the effects of depolarisation and alpha-latrotoxin in consecutive order. The preliminary 4-aminopyridine-stimulated [(3)H]GABA release attenuated the toxin effect. But when depolarisation occurred in Ca(2+)-free medium, no influence on alpha-latrotoxin effect was revealed. Employing digitonin-permeated synaptosomes, we have shown that alpha-latrotoxin could stimulate [3H]GABA release in the medium with 1mM EGTA, this effect of the toxin was blocked by concanavalin A and was ATP-dependent. The latter suggests that alpha-latrotoxin-released neurotransmitter has the vesicular nature. We assume that the type of the toxin membrane receptor does not determine the mechanisms of [(3)H]GABA release evoked by alpha-latrotoxin.  相似文献   

6.
The present experiments investigated the effect of a neurotoxin purified from the venom of the spider Phoneutria nigriventer. This toxic component, P. nigriventer toxin 3-6 (PnTx3-6), abolished Ca(2+)-dependent glutamate release with an IC(50) of 74.4nM but did not alter Ca(2+)-independent secretion of glutamate when brain cortical synaptosomes were depolarized by KCl (33mM). This effect was most likely due to interference with the entry of calcium through voltage activated calcium channels (VACC), reducing the increase in the intrasynaptosomal free calcium induced by membrane depolarization with an IC(50) of 9.5nM. We compared the alterations induced by PnTx3-6 with the actions of toxins known to block calcium channels coupled to exocytosis. Our results indicate that PnTx3-6 inhibition of glutamate release and intrasynaptosomal calcium involves P/Q type calcium channels and this toxin can be a valuable tool in the investigation of calcium channels.  相似文献   

7.
Li R  Lei Q  Song G  He X  Xie Z 《Cell biology international》2008,32(9):1136-1142
Extracellular calcium is essential for neurotransmitter release, but the detailed mechanism by which Ca(2+) regulates basal synaptic release has not yet been fully explored. In this study, calcium imaging and the whole-cell patch-clamp technique were used to investigate the role of Ca(2+) in basal acetylcholine (ACh) release in the Xenopus neuromuscular junction and in isolated myocytes exogenously loaded with ACh. Carried out in normal and Ca(2+)-free extracellular solution, the results indicate that Ca(2+) near the release site is essential for basal neurotransmitter release.  相似文献   

8.
BK channels modulate neurotransmitter release due to their activation by voltage and Ca(2+). Intracellular Mg(2+) also modulates BK channels in multiple ways with opposite effects on channel function. Previous single-channel studies have shown that Mg(2+) blocks the pore of BK channels in a voltage-dependent manner. We have confirmed this result by studying macroscopic currents of the mslo1 channel. We find that Mg(2+) activates mslo1 BK channels independently of Ca(2+) and voltage by preferentially binding to their open conformation. The mslo3 channel, which lacks Ca(2+) binding sites in the tail, is not activated by Mg(2+). However, coexpression of the mslo1 core and mslo3 tail produces channels with Mg(2+) sensitivity similar to mslo1 channels, indicating that Mg(2+) sites differ from Ca(2+) sites. We discovered that Mg(2+) also binds to Ca(2+) sites and competitively inhibits Ca(2+)-dependent activation. Quantitative computation of these effects reveals that the overall effect of Mg(2+) under physiological conditions is to enhance BK channel function.  相似文献   

9.
The Rab-specific alphaGDP-dissociation inhibitor (alphaGDI) regulates the recycling of Rab GTPases. We have now identified a novel alphaGDI complex from synaptic membranes that contains three chaperone components: Hsp90, Hsc70 and cysteine string protein (CSP). We find that the alphaGDI-chaperone complex is dissociated in response to Ca(2+)-induced neurotransmitter release, that chaperone complex dissociation is sensitive to the Hsp90 inhibitor geldanamycin (GA) and that GA inhibits the ability of alphaGDI to recycle Rab3A during neurotransmitter release. We propose that alphaGDI interacts with a specialized membrane-associated Rab recycling Hsp90 chaperone system on the vesicle membrane to coordinate the Ca(2+)-dependent events triggering Rab-GTP hydrolysis with retrieval of Rab-GDP to the cytosol.  相似文献   

10.
M K Ticku  A Delgado 《Life sciences》1989,44(18):1271-1276
86Rb-efflux assay from preloaded synaptosomes of rat cerebral cortex was developed to study the effect of GABAB receptor agonist baclofen on Ca2+-activated K+-channels. Depolarization (100 mM K) of 86Rb-loaded synaptosomes in physiological buffer increased Ca2+-activated 86Rb-efflux by 400%. The 86Rb-efflux was blocked by quinine sulphate, tetraethylammonium and La3+ indicating the involvement of Ca2+-activated K+-channels. (-)Baclofen inhibited Ca2+-activated 86Rb-efflux in a stereospecific manner. The inhibitory effect of (-)baclofen was mediated by GABAB receptor activation, since it was blocked by GABAB antagonist phaclofen, but not by bicuculline. Further, pertussis toxin also blocked the ability of baclofen or depolarizing action to affect Ca2+-activated K+-channels. These results suggest that baclofen inhibits Ca2+-activated K+-channels in synaptosomes and these channels are regulated by G-proteins. This assay may provide an ideal in vitro model to study GABAB receptor pharmacology.  相似文献   

11.
In skeletal muscle, sarcoplasmic reticulum (SR) calcium release is controlled by the plasma membrane voltage through interactions between the voltage-sensing dihydropyridine receptor (DHPr) and the ryanodine receptor (RYr) calcium release channel. Maurocalcine (MCa), a scorpion toxin peptide presenting some homology with a segment of a cytoplasmic loop of the DHPr, has been previously shown to strongly affect the activity of the isolated RYr. We injected MCa into mouse skeletal muscle fibers and measured intracellular calcium under voltage-clamp conditions. Voltage-activated calcium transients exhibited similar properties in control and in MCa-injected fibers during the depolarizing pulses, and the voltage dependence of calcium release was similar under the two conditions. However, MCa was responsible for a pronounced sustained phase of Ca(2+) elevation that proceeded for seconds following membrane repolarization, with no concurrent alteration of the membrane current. The magnitude of the underlying uncontrolled extra phase of Ca(2+) release correlated well with the peak calcium release during the pulse. Results suggest that MCa binds to RYr that open on membrane depolarization and that this interaction specifically alters the process of repolarization-induced closure of the channels.  相似文献   

12.
Rossi B  Ogden D  Llano I  Tan YP  Marty A  Collin T 《PloS one》2012,7(6):e39983
In developing cerebellar molecular layer interneurons (MLIs), NMDA increases spontaneous GABA release. This effect had been attributed to either direct activation of presynaptic NMDA receptors (preNMDARs) or an indirect pathway involving activation of somato-dendritic NMDARs followed by passive spread of somatic depolarization along the axon and activation of axonal voltage dependent Ca(2+) channels (VDCCs). Using Ca(2+) imaging and electrophysiology, we searched for preNMDARs by uncaging NMDAR agonists either broadly throughout the whole field or locally at specific axonal locations. Releasing either NMDA or glutamate in the presence of NBQX using short laser pulses elicited current transients that were highly sensitive to the location of the spot and restricted to a small number of varicosities. The signal was abolished in the presence of high Mg(2+) or by the addition of APV. Similar paradigms yielded restricted Ca(2+) transients in interneurons loaded with a Ca(2+) indicator. We found that the synaptic effects of NMDA were not inhibited by blocking VDCCs but were impaired in the presence of the ryanodine receptor antagonist dantrolene. Furthermore, in voltage clamped cells, bath applied NMDA triggers Ca(2+) elevations and induces neurotransmitter release in the axonal compartment. Our results suggest the existence of preNMDARs in developing MLIs and propose their involvement in the NMDA-evoked increase in GABA release by triggering a Ca(2+)-induced Ca(2+) release process mediated by presynaptic Ca(2+) stores. Such a mechanism is likely to exert a crucial role in various forms of Ca(2+)-mediated synaptic plasticity.  相似文献   

13.
Using large clostridial cytotoxins as tools, the role of Rho GTPases in activation of RBL 2H3 hm1 cells was studied. Clostridium difficile toxin B, which glucosylates Rho, Rac, and Cdc42 and Clostridium sordellii lethal toxin, which glucosylates Rac and Cdc42 but not Rho, inhibited the release of hexosaminidase from RBL cells mediated by the high affinity antigen receptor (FcepsilonRI). Additionally, toxin B and lethal toxin inhibited the intracellular Ca(2+) mobilization induced by FcepsilonRI-stimulation and thapsigargin, mainly by reducing the influx of extracellular Ca(2+). In patch clamp recordings, toxin B and lethal toxin inhibited the calcium release-activated calcium current by about 45%. Calcium release-activated calcium current, the receptor-stimulated Ca(2+) influx, and secretion were inhibited neither by the Rho-ADP-ribosylating C3-fusion toxin C2IN-C3 nor by the actin-ADP-ribosylating Clostridium botulinum C2 toxin. The data indicate that Rac and Cdc42 but not Rho are not only involved in late exocytosis events but are also involved in Ca(2+) mobilization most likely by regulating the Ca(2+) influx through calcium release-activated calcium channels activated via FcepsilonRI receptor in RBL cells.  相似文献   

14.
ATP stimulates calcium-dependent glutamate release from cultured astrocytes   总被引:9,自引:0,他引:9  
ATP caused a dose-dependent, receptor-mediated increase in the release of glutamate and aspartate from cultured astrocytes. Using calcium imaging in combination HPLC we found that the increase in intracellular calcium coincided with an increase in glutamate and aspartate release. Competitive antagonists of P(2) receptors blocked the response to ATP. The increase in intracellular calcium and release of glutamate evoked by ATP were not abolished in low Ca(2+)-EGTA saline, suggesting the involvement of intracellular calcium stores. Pre-treatment of glial cultures with an intracellular Ca(2+) chelator abolished the stimulatory effects of ATP. Thapsigargin (1 microM), an inhibitor of Ca(2+)-ATPase from the Ca(2+) pump of internal stores, significantly reduced the calcium transients and the release of aspartate and glutamate evoked by ATP. U73122 (10 microM, a phospholipase C inhibitor, attenuated the ATP-stimulatory effect on calcium transients and blocked ATP-evoked glutamate release in astrocytes. Replacement of extracellular sodium with choline failed to influence ATP-induced glutamate release. Furthermore, inhibition of the glutamate transporters p-chloromercuri-phenylsulfonic acid and Ltrans-pyrolidine-2,4-dicarboxylate failed to impair the ability of ATP to stimulate glutamate release from astrocytes. However, an anion transport inhibitor, furosemide, and a potent Cl(-) channel blocker, 5-nitro-2(3-phenylpropylamino)-benzoate, reduced ATP-induced glutamate release. These results suggest that ATP stimulates excitatory amino acid release from astrocytes via a calcium-dependent anion-transport sensitive mechanism.  相似文献   

15.
The present study shows that omega-agatoxin-TK, a toxin of the venom of Agelenopsis aperta, which is 10 times more concentrated than the P/Q type Ca(2+) channel blocker, omega-agatoxin-IVA in the venom, inhibits the high K(+) depolarisation-induced rise in internal Ca(2+) (Ca(i), as determined with fura-2) dose dependently in cerebral (striatal and hippocampal) isolated nerve endings, with calculated IC(50)'s of about 60nM. The maximal inhibition exerted by omega-agatoxin-TK in striatal synaptosomes (61 +/- 11%) is 10% larger than in hippocampal synaptosomes, suggesting a larger population of omega-agatoxin-TK-sensitive Ca(2+) channels in striatal than in hippocampal nerve endings. The N-type Ca(2+) channel blocker, omega-conotoxin-GVIA (1muM), inhibits part of the omega-agatoxin-TK-insensitive rise in Ca(i) induced by high K(+). In contrast to the inhibition exerted by omega-agatoxin-TK on the Ca(i) response to high K(+), omega-agatoxin-TK failed to inhibit the tetrodotoxin-sensitive elevations in Ca(i) and in internal Na(+) (Na(i), as determined with SBFI) induced by veratridine, indicating that the Ca(2+) influx activated by veratridine does not involve omega-agatoxin-TK-sensitive channels. High K(+) does not increase Na(i). In [(3)H]Glu preloaded hippocampal synaptosomes super-fused with low Na(+) Krebs Ringer HEPES (a condition that guarantees the elimination of neurotransmitter transporters-mediated release), the release of [(3)H]Glu induced by high K(+) is absolutely dependent on the entrance of external Ca(2+). This exocytotic release of [(3)H]Glu attained in the absence of a chemical Na(+) gradient is inhibited with the same potency and efficacy by omega-agatoxin-TK and by omega-agatoxin-IVA, which is known to differ from omega-agatoxin-TK in its amino terminal moiety. These results indicate that omega-agatoxin-TK represents a good pharmacological tool to study P/Q type Ca(2+) channel-mediated responses in cerebral nerve endings.  相似文献   

16.
Brain cells in situ contain low concentrations of free polyunsaturated fatty acids such as arachidonic acid (AA) that are released following pathological insults. As a large rise in extracellular [K(+)] accompanies cerebral ischemia, we explored whether this was a stimulus for cellular AA release employing a murine mixed cortical cell culture preparation radiolabeled with AA. Elevating the [K(+)](o) from 5 to 52 mm induced a time-dependent increase in [(3)H]AA release, which reached a plateau after 15 min. Removal of [Ca(2+)](o) or addition of CdCl(2) (100 microm) diminished the net high K(+)-induced AA release, as did treatment of the cultures with tetanus toxin (300 ng/ml) to block endogenous neurotransmitter release. Pharmacological antagonism of both ionotropic and metabotropic glutamate receptors completely prevented high K(+)-evoked AA release, indicating that glutamate was the neurotransmitter in question. Addition of exogenous glutamate mimicked precisely the characteristics of AA release that followed increases in [K(+)](o). Finally, glutamate and AA were released solely from neurons as tetanus toxin did not cleave astrocytic synaptobrevin-2, nor was AA released from pure astrocyte cultures using the same stimuli that were effective in mixed cultures. Taken in toto, our data are consistent with the following scenario: high [K(+)](o) depolarizes neurons, causing an influx of Ca(2+) via voltage-gated Ca(2+) channels. This Ca(2+) influx stimulates the release of glutamate into the synaptic cleft, where it activates postsynaptic glutamate receptors. Events likely converge on the activation of a phospholipase A(2) family member and possibly the enzymes diacylglycerol and monoacylglycerol lipases to yield free AA.  相似文献   

17.
Pan ZH  Hu HJ  Perring P  Andrade R 《Neuron》2001,32(1):89-98
Transmitter release in neurons is thought to be mediated exclusively by high-voltage-activated (HVA) Ca(2+) channels. However, we now report that, in retinal bipolar cells, low-voltage-activated (LVA) Ca(2+) channels also mediate neurotransmitter release. Bipolar cells are specialized neurons that release neurotransmitter in response to graded depolarizations. Here we show that these cells express T-type Ca(2+) channel subunits and functional LVA Ca(2+) currents sensitive to mibefradil. Activation of these currents results in Ca(2+) influx into presynaptic terminals and exocytosis, which we detected as a capacitance increase in isolated terminals and the appearance of reciprocal currents in retinal slices. The involvement of T-type Ca(2+) channels in bipolar cell transmitter release may contribute to retinal information processing.  相似文献   

18.
A novel procedure of alpha-latrotoxin (alpha LTX) purification has been developed. Pure alpha LTX has been demonstrated to exist as a very stable homodimer. Such dimers further assemble into tetramers, and Ca(2+), Mg(2+) or higher toxin concentrations facilitate this process. However, when the venom is treated with EDTA, purified alpha LTX loses the ability to tetramerise spontaneously; the addition of Mg(2+) or Ca(2+) restores this ability. This suggests that alphaLTX has some intrinsically bound divalent cation(s) that normally support its tetramerisation. Single-particle cryoelectron microscopy and statistical image analysis have shown that: 1) the toxin has a non-compact, branching structure; 2) the alpha LTX dimers are asymmetric; and 3) the tetramers are symmetric and have a 25 A-diameter channel in the centre. Both alpha LTX oligomers bind to the same receptors in synaptosomes and rat brain sections. To study the effects of the dimers and tetramers on norepinephrine release from rat cerebrocortical synaptosomes, we used the EDTA-treated and untreated toxin preparations. The number of tetramers present in a preparation correlates with alpha LTX pore formation, suggesting that the tetramers are the pore-forming species of alpha LTX. The toxin actions mediated by the pore include: 1) Ca(2+) entry from the extracellular milieu; and 2) passive efflux of neurotransmitters via the pore that occurs independently of Ca(2+). The Ca(2+)-dependent alpha LTX-stimulated secretion conforms to all criteria of vesicular exocytosis but also depends upon intact intracellular Ca(2+) stores and functional phospholipase C (PLC). The Ca(2+)-dependent effect of the toxin is stronger when dimeric alpha LTX is used, indicating that higher receptor occupancy leads to its stronger activation, which contributes to stimulation of neuroexocytosis. In contrast, the Ca(2+)-independent release measured biochemically represents leakage of neurotransmitters through the toxin pore. These results are discussed in relation to the previously published observations.  相似文献   

19.
Antigen-evoked influx of extracellular Ca(2+) into mast cells may occur via store-operated Ca(2+) channels called calcium release-activated calcium (CRAC) channels. In mast cells of the rat basophilic leukemia cell line (RBL-2H3), cholera toxin (CT) potentiates antigen-driven uptake of (45)Ca(2+) through cAMP-independent means. Here, we have used perforated patch clamp recording at physiological temperature to test whether cholera toxin or its substrate, Gs, directly modulates the activity of CRAC channels. Cholera toxin dramatically amplified (two- to fourfold) the Ca(2)+ release-activated Ca(2+) current (I(CRAC)) elicited by suboptimal concentrations of antigen, without itself inducing I(CRAC), and this enhancement was not mimicked by cAMP elevation. In contrast, cholera toxin did not affect the induction of I(CRAC) by thapsigargin, an inhibitor of organelle Ca(2+) pumps, or by intracellular dialysis with low Ca(2+) pipette solutions. Thus, the activity of CRAC channels is not directly controlled by cholera toxin or Gsalpha. Nor was the potentiation of I(CRAC) due to enhancement of phosphoinositide hydrolysis or calcium release. Because Gs and the A subunit of cholera toxin bind to ADP ribosylation factor (ARF) and could modulate its activity, we tested the sensitivity of antigen-evoked I(CRAC) to brefeldin A, an inhibitor of ARF-dependent functions, including vesicle transport. Brefeldin A blocked the enhancement of antigen-evoked I(CRAC) without inhibiting ADP ribosylation of Gsalpha, but it did not affect I(CRAC) induced by suboptimal antigen or by thapsigargin. These data provide new evidence that CRAC channels are a major route for Fcin receptor I-triggered Ca(2+) influx, and they suggest that ARF may modulate the induction of I(CRAC) by antigen.  相似文献   

20.
The binding of omega-conotoxin to isolated rat neurohypophysial nerve terminals, its effect on the depolarization-induced increase of cytoplasmic Ca2+ and on the potassium and electrically-induced release of vasopressin (AVP) have been studied. The results show that isolated neurosecretory nerve endings have calcium channels with a high affinity for omega-CgTx and that this toxin inhibits neurohormone release at very low concentration (IC50 = 0. 1nM). Although secretion of vasopressin is inhibited to a great extent by the toxin it is shown that a small but significant amount of the depolarization-induced AVP release is insensitive to omega-CgTx and to the dihydropyridine molecule nicardipine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号