首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S fimbrial adhesins I and II (SfaI and II), produced by extraintestinal Escherichia coli pathogens that cause urinary tract infections (UTI) and newborn meningitis (NBM), respectively, mediate bacterial adherence to sialic acid-containing glycoprotein receptors present on host epithelial cells and extracellular matrix. The S fimbrial adhesin complexes consist of four proteins: SfaI-A, the major subunit protein and the minor subunit proteins SfaI-G, SfaI-S and SfaI-H. Sialic acid-specific binding is mediated by the minor subunit protein SfaI-S. In order to determine whether the minor subunit proteins SfaI-G, -S and -H play a role in the modulation of adherence and the degree of fimbriation, a trans-complementation system was developed. A non-adhesive E. coli K-12 derivative, harbouring the sfaI-A gene but lacking sfaI-G, -S and -H, was transformed with sfaI-G, -S or -H. Only SfaI-S was able to increase the degree of fimbriation and to confer adhesion properties on the recombinant E. coli K-12 strains. Amino acid residues in SfaI-S that are involved in modulation of fimbriation as well as in receptor recognition were localized by random and site-directed mutagenesis. Received: 15 March 1999 / Accepted: 2 November 1999  相似文献   

2.
The S fimbrial adhesin (Sfa) enables Escherichia coli to attach to sialic acid-containing receptor molecules of eukaryotic cells. As previously reported, the genetic determinant coding for the Sfa of an E. coli O6 strain was cloned, the gene coding for the major fimbrial subunit was identified and sequenced and the S specific adhesin was detected. Here we present evidence that in addition to the major subunit protein SfaA three other minor subunit proteins, SfaG (17 kD), SfaS (14 kD) and SfaH (31 kD) can be isolated from the S-specific fimbrial adhesin complex. The genes coding for these minor subunits were identified, mutagenized separately and sequenced. Using haemagglutination tests, electron-microscopy and quantitative ELISA assays with monoclonal anti-SfaA and anti-SfaS antibodies the functions of the minor subunits were determined. It was determined that SfaS is identical to the S-specific adhesin, which also plays a role in determination of the degree of fimbriation of the cell. The minor subunit SfaH also had some influence on the level of fimbriation of the cell, while SfaG is necessary for full expression of S-specific binding. It was further shown that the amino-terminal protein sequence of the isolated SfaS protein was identical to the protein sequence calculated from the DNA sequence of the sfaS gene locus.  相似文献   

3.
Adherence of type-1-fimbriate Salmonella enterica and Escherichia coli to immobilized proteins of the extracellular matrix and reconstituted basement membranes was studied. The type-1-fimbriate strain SH401 of S. enterica serovar Enteritidis showed good adherence to laminin, whereas the adherence to fibronectin, type I, type III, type IV or type V collagens was poor. Only minimal adherence to the matrix proteins was seen with a non-fimbriate strain of S. enterica serovar Typhimurium. A specific and mannoside-inhibitable adhesion to laminin was exhibited by the recombinant E. coli strain HB101(plSF101) possessing fim genes of Typhimurium. Adherence to laminin of strain SH401 was inhibited by Fab fragments against purified SH401 fimbriae, and a specific binding to laminin, of the purified fimbriae, was demonstrated using fimbriae-coated fluorescent microparticles. Periodate treatment of laminin abolished the bacterial adhesion as well as the fimbrial binding. Specific adhesion to immobilized laminin was also shown by the type-1 -fimbriate E. coli strain 2131 and the recombinant strain E. coli HB101(pPKL4) expressing the cloned type-1-fimbriae genes of E. coli. Adhesion to laminin of strain HB101(pPKL4) was inhibited by mannoside, and no adherence was seen with the fimH mutant E. coli HB101(pPKL5/pPKL53) lacking the fimbrial lectin subunit. The type-1 fimbriate strains also adhered to reconstituted basement membranes from mouse sarcoma cells and human placenta. Adhesion of strains HB101(plSF101) and HB101(pPKL4) to both basement membrane preparations was inhibited by mannoside. We conclude that type-1 fimbriae of S. enterica and E. coli bind to oMgomannoside chains of the lamjnjn network in basement membranes.  相似文献   

4.
The gene fimU, located on a recombinant plasmid carrying the Salmonella typhimurium type 1 fimbrial gene cluster is closely related to the Escherichia coli tRNA gene argU. The fimU gene complements an E. coli argU mutant that is a P2 lysogen, thereby allowing the phage P4 to grow in this strain but preventing the growth of phage lambda. In addition, fimU was shown to be involved in fimbrial expression since transformants of the E. coli argU mutant could produce fimbriae only in the presence of fimU but not in its absence, whereas in an E. coli argU + strain fimbriation did not require the fimU gene.  相似文献   

5.
Type I fimbriae commonly expressed by Escherichia coli mediate initial attachment of bacteria to host epithelial cells. However, the role of type I fimbriae in the adherence of porcine enterotoxigenic E. coli (ETEC) to host receptors is unclear. In this study, we examined the role of type I fimbriae in the adherence and biofilm formation of F18ac+ ETEC by constructing mutant strains with deletion of type I fimbrial major subunit (fimA) or minor subunit (fimH). The data indicated that the isogenic ΔfimA and ΔfimH mutants showed significantly lower adherence to porcine epithelial IPEC-1 and IPEC-J2 cells as compared to the F18ac+ ETEC parent strain. In addition, the adherence of F18ac+ ETEC to both cell lines was blocked by the presence of 0.5% D-mannose in the cell culture medium. In addition, both mutant strains impaired their ability to form biofilm in vitro. Interestingly, the deletion of fimA or fimH genes resulted in remarkable up-regulation of the expression of adhesin involved in diffuse adherence (AIDA-I). These results indicated that type I fimbriae may be required for efficient adherence of F18ac+ ETEC to pig epithelial cells and, perhaps, biofilm formation.  相似文献   

6.
YdiV, a degenerate EAL domain protein, represses motility by interacting with FlhD to abolish FlhDC interaction with DNA. Here, we demonstrate that deletion of ydiV dysregulates coordinate control of motility and adherence by increasing adherence of Escherichia coli CFT073 to a bladder epithelial cell line by specifically increasing production of P fimbriae. Interestingly, only one of the two P fimbrial operons, pap_2, present in the genome of E. coli CFT073 was upregulated. This derepression of the pap_2 operon is abolished following deletion of either cya or crp, demonstrating cyclic AMP (cAMP)-dependent activation of the P fimbrial operon. However, the absence of YdiV does not affect the gene expression of cya and crp, and loss of SdiA in the ydiV mutant does not affect the derepression of the pap_2 operon, suggesting that YdiV control of adherence acts in response to cAMP levels. Deletion of ydiV increases motility by increasing expression of fliA, suggesting that in E. coli CFT073, YdiV regulates motility by the same mechanism as that described previously for commensal E. coli strains. Furthermore, analysis of site-directed mutations found two putative Mg2+-binding residues of four conserved YdiV residues (E29 and Q219) that were involved in regulation of motility and FliC production, while two conserved c-di-GMP-binding residues (D156 and D165) only affected motility. None of the four conserved YdiV residues appeared to affect regulation of adherence. Therefore, we propose a model in which a degenerate EAL, YdiV, utilizes different domains to regulate motility through interaction with FlhD and adherence to epithelial cells through cAMP-dependent effects on the pap_2 promoter.  相似文献   

7.
8.
Lytic Replication of Coliphage Lambda in Salmonella typhosa Hybrids   总被引:2,自引:0,他引:2       下载免费PDF全文
Hybrids between Escherichia coli K-12 and Salmonella typhosa which conserved a continuous K-12 chromosomal diploid segment extending from pro through ara to the strA locus were sensitive to plaque formation by wild-type λ. These partially diploid S. typhosa hybrids could be lysogenized with λ and subsequently induced to produce infectious phage particles. When the K-12 genes were segregated from a lysogenic S. typhosa hybrid, phage-productive ability was no longer detectable due to loss of a genetic region necessary for vegetative replication of λ. However, λ prophage was shown to persist in a quiescent state in the S. typhosa hybrid segregant with phage-productive ability being reactivated after replacement of the essential K-12 λ replication region. Low-frequency transduction and high-frequency transduction lysates containing the gal+ genes of S. typhosa were prepared by induction of λ-lysogenic S. typhosa hybrids indicating that the attλ site is chromosomally located in S. typhosa in close proximity to the gal locus as in E. coli K-12. After propagation in S. typhosa hybrids, λ was subject to restriction by E. coli K-12 recipients, thus establishing that S. typhosa does not perform the K-12 modification of λ deoxyribonucleic acid. Hybrids of S. typhosa, however, did not restrict λ grown previously on E. coli K-12. The K-12 genetic region required for λ phage production in S. typhosa was located within min 66 to min 72 on the genetic map of the E. coli chromosome. Transfer of an F-merogenote encompassing the 66 to 72 min E. coli chromosomal region to λ-insensitive S. typhosa hybrids enabled them to replicate wild-type λ. The λ-insensitive S. typhosa hybrid, WR4255, which blocks λ replication, can be mutagenized to yield mutant strains sensitive to λvir and λimm434. These WR4255 mutants remained insensitive to plaque formation by wild-type λ.  相似文献   

9.
Two lytic phages, designated S1 and S2, were isolated from culture lysates of a genetically modified serine-producing Escherichia coli K-12. Both phages were highly species-specific for E. coli. S1 was specific for strains of K-12, while S2 attacked strains B and C in addition to K-12 strains. S1 had an icosahedral head 75 nm in diameter and a contractile tail 150 nm long. S2 had an icosahedral head 60 nm in diameter and a noncontractile tail 160 nm long. They were serologically unrelated. Their serotypes were different from those of the other E. coli phages. The latent period and burst size were 28 min and 450, respectively, for S1, and 15 min and 100, respectively, for S2. The phages contained double-stranded DNA with four normal bases. The G+C contents were about 31% for S1 DNA and about 37% for S2 DNA. Restriction patterns of their DNAs were different from each other. The genome sizes were 52 kbp for S1 and 49 kbp for S2. No homology was observed between their genomes. Furthermore, the structural proteins of the two phages also differend. W conclude that phages S1 and S2, differing from each other, could be new phages for E. coli.  相似文献   

10.
11.
The gene fimU, located on a recombinant plasmid carrying the Salmonella typhimurium type 1 fimbrial gene cluster is closely related to the Escherichia coli tRNA gene argU. The fimU gene complements an E. coli argU mutant that is a P2 lysogen, thereby allowing the phage P4 to grow in this strain but preventing the growth of phage lambda. In addition, fimU was shown to be involved in fimbrial expression since transformants of the E. coli argU mutant could produce fimbriae only in the presence of fimU but not in its absence, whereas in an E. coli argU + strain fimbriation did not require the fimU gene.  相似文献   

12.
《Anaerobe》2001,7(5):255-262
Porphyromonas gingivalis is a Gram-negative oral anaerobe considered to be a major pathogen in adult periodontitis. One of the noted virulence factors of this bacterium is its unique fimbriae, which are composed of FimA (fimbrilin) as a major subunit. We have recently identified and isolated two essential genes, fimS and fimR, for fimbriation of P. gingivalis from transposon-mutagenesis studies. The genes encode two components of a His–Asp phosphorelay system, FimS as a sensor histidine kinase and FimR as a response regulator. Disruption of either gene causes fimbrial deficiency in this organism. In this study, the expression of FimR protein was detected in various P. gingivalis strains. In addition, a fragment containing fimR with a possible promoter was introduced into the fimR -disruption mutant, using a shuttle vector, pT-COW. The transconjugant recovered both FimR and FimA expression at levels comparable to the parentP. gingivalis ATCC 33277. Furthermore, characteristic fimbrial structures were clearly observed around the cell surface of both parent and transconjugant cells under electron microscopy. This is the first successful complementation experiment in P. gingivalis. These results show that the FimR protein is essential as a positive regulator in fimbriation of P. gingivalis.  相似文献   

13.
Chaperone-usher (CU) fimbriae are adhesive surface organelles common to many Gram-negative bacteria. Escherichia coli genomes contain a large variety of characterised and putative CU fimbrial operons, however, the classification and annotation of individual loci remains problematic. Here we describe a classification model based on usher phylogeny and genomic locus position to categorise the CU fimbrial types of E. coli. Using the BLASTp algorithm, an iterative usher protein search was performed to identify CU fimbrial operons from 35 E. coli (and one Escherichia fergusonnii) genomes representing different pathogenic and phylogenic lineages, as well as 132 Escherichia spp. plasmids. A total of 458 CU fimbrial operons were identified, which represent 38 distinct fimbrial types based on genomic locus position and usher phylogeny. The majority of fimbrial operon types occupied a specific locus position on the E. coli chromosome; exceptions were associated with mobile genetic elements. A group of core-associated E. coli CU fimbriae were defined and include the Type 1, Yad, Yeh, Yfc, Mat, F9 and Ybg fimbriae. These genes were present as intact or disrupted operons at the same genetic locus in almost all genomes examined. Evaluation of the distribution and prevalence of CU fimbrial types among different pathogenic and phylogenic groups provides an overview of group specific fimbrial profiles and insight into the ancestry and evolution of CU fimbriae in E. coli.  相似文献   

14.
In bacterial 16S rRNAs, methylated nucleosides are clustered within the decoding center, and these nucleoside modifications are thought to modulate translational fidelity. The N4, 2′-O-dimethylcytidine (m4Cm) at position 1402 of the Escherichia coli 16S rRNA directly interacts with the P-site codon of the mRNA. The biogenesis and function of this modification remain unclear. We have identified two previously uncharacterized genes in E. coli that are required for m4Cm formation. mraW (renamed rsmH) and yraL (renamed rsmI) encode methyltransferases responsible for the N4 and 2′-O-methylations of C1402, respectively. Recombinant RsmH and RsmI proteins employed the 30S subunit (not the 16S rRNA) as a substrate to reconstitute m4Cm1402 in the presence of S-adenosylmethionine (Ado-Met) as the methyl donor, suggesting that m4Cm1402 is formed at a late step during 30S assembly in the cell. A luciferase reporter assay indicated that the lack of N4 methylation of C1402 increased the efficiency of non-AUG initiation and decreased the rate of UGA read-through. These results suggest that m4Cm1402 plays a role in fine-tuning the shape and function of the P-site, thus increasing decoding fidelity.  相似文献   

15.
Type 1 fimbriae are a known virulence factor in a number of pathogenic enterobacteriaceae, including Salmonella, Shigella and E. coli. Yet, they are also expressed by some commensal strains, notably of E. coli. One hypothesis of the role of fimbriae in commensals is that they evoke a small but tolerable host immune response in order to have the host release sialic acid, which is a valuable nutrient. Genetic evidence suggests that sialic acid down-regulates fimbriation. This has been believed to enable the cells to reduce virulence when the host response is increasing, thus avoiding a full activation of host defenses. In this article we assess the plausibility of this hypothesis using mathematical models. Our models lead us to two main conclusions: A slight activation of host defenses is only possible with a carefully tuned set of parameters, whereas under a wide range of parameters and assumptions, the model predicts the host defenses to be activated to at least half their potential in response to fimbriation. Secondly, the fact that fimbriation is suppressed by sialic acid seems irrelevant for the global qualitative properties.  相似文献   

16.
17.
18.
Polynucleotide sequence similarity tests were carried out to determine the extent of divergence present in a number of Escherichia coli strains, obtained from diverse human, animal, and laboratory sources, and closely related strains of Shigella, Salmonella, and the Alkalescens-Dispar group. At 60 C, relative reassociation of deoxyribonucleic acid (DNA) from the various strains with E. coli K-12 DNA ranged from 100 to 36%, with the highest level of reassociation found for three strains derived from K-12, and the lowest levels for two “atypical” E. coli strains and S. typhimurium. The change in thermal elution midpoint, which indicates the stability of DNA duplexes, ranged from 0.1 to 14.5 C, with thermal stability closely following the reassociation data. Reassociation experiments performed at 75 C, at which temperature only the more closely related DNA species form stable duplexes, gave similar indications of relatedness. At both temperatures, Alkalescens-Dispar strains showed close relatedness to E. coli, supporting the idea that they should be included in the genus Escherichia. Reciprocal binding experiments with E. coli BB, 02A, and K-12 yielded different reassociation values, suggesting that the genomes of these strains are of different size. The BB genome was calculated to be 9% larger than that of K-12, and that of 02A 9% larger than that of BB. Calculation of genome size for a series of E. coli strains yielded values ranging from 2.29 × 109 to 2.97 × 109 daltons. E. coli strains and closely related organisms were compared by Adansonian analysis for their relatedness to a hypothetical median strain. E. coli 0128a was the most closely related to this median organism. In general, these data compared well with the data from reassociation experiments among E. coli strains. However, anomalous results were obtained in the cases of Shigella flexneri, S. typhimurium, and “atypical” E. coli strains.  相似文献   

19.
λ-Escherichia coli complexes exhibited remarkable sensitivity to the treatment with test steroidal derivatives in the presence of Cu(II). The decline in plaque-forming units after steroid treatment was more pronounced in complexes with some of the irradiation repair-defective mutants of E. coli K-12, i.e., recA, lexA and polA, as compared to uvrA and wild-type strains. The red gene of λ phage and recA gene of E. coli seem to have a complementary effect on the steroid-induced lesions. An enhanced level of mutagenesis was observed when steroid-treated E. coli cells were transformed with steroid-treated pBR322 plasmid DNA. A remarkable degree of c mutation was also observed when steroid I-treated phage particles were allowed to adsorb on steroid-treated wild-type bacteria. Moreover, the oxathione steroid treatment of λcI857-E. coli lysogen resulted in prophage induction in nutrient broth even at 32°C. Thus on the basis of these results, the role of SOS repair system in steroid-induced mutagenesis and repair of DNA lesions in E. coli and bacteriophage λ has been suggested.  相似文献   

20.
Mobilizable shuttle plasmids containing the origin-of-transfer (oriT) region of plasmids F (IncFI), ColIb-P9 (IncI1), and RP4/RP1 (IncPα) were constructed to test the ability of the cognate conjugation system to mediate gene transfer from Escherichia coli to Saccharomyces cerevisiae. Only the Pα system caused detectable mobilization to yeast, giving peak values of 5 × 10−5 transconjugants per recipient cell in 30 min. Transfer of the shuttle plasmid required carriage of oriT in cis and the provision in trans of the Pα Tra1 core and Tra2 core regions. Genes outside the Tra1 core did not increase the mobilization efficiency. All 10 Tra2 core genes (trbB, -C, -D, -E, -F, -G, -H, -I, -J, and -L) required for plasmid transfer to E. coli K-12 were needed for transfer to yeast. To assess whether the mating-pair formation (Mpf) system or DNA-processing apparatus of the Pα conjugation system is critical in transkingdom transfer, an assay using an IncQ-based shuttle plasmid specifying its own DNA-processing system was devised. RP1 but not ColIb mobilized the construct to yeast, indicating that the Mpf complex determined by the Tra2 core genes plus traF is primarily responsible for the remarkable fertility of the Pα system in mediating gene transfer from bacteria to eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号