首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human hemoglobin (Hb) conjugated with six copies of PEG-5K is nonhypertensive. The hexaPEGylated Hb exhibits molecular size homogeneity in spite of the chemical heterogeneity with respect to the sites of conjugation (Manjula et al., 2005). In the present study, Hb conjugated with an average of 4, 6, 8 and 10 copies of PEG-5K chains have been generated using the extension arm facilitated PEGylation protocol. Except for the tetraPEGylated Hb, all the other products exhibit molecular size homogeneity. The molecular, colligative and functional properties of PEG-Hb conjugates have been correlated with the extent of PEGylation. The results imply that six copies of PEG-5K chains are accommodated on Hb without significant crowding on the molecular surface. As more copies of PEG-5K chains are conjugated to form octa and deca PEGylated Hb, the PEG-chains conjugated appear to undergo transition from a mushroom (compact) to a brush-like conformation (extended conformation) with a concomitant decrease in the propensity of the molecule to transition from oxy to deoxy conformation in the presence of allosteric effectors. The viscosity and the colloidal osmotic pressure of Hb increase with the number of the PEG-chains conjugated in an exponential fashion. The composition of the PEGylated Hb generated appears to be controlled by (i) high reactivity of thiol groups of the extension arms on Hb with maleimide-PEG, (ii) increase in the viscosity of the reaction mixture as the level of PEGylation increases and (iii) increased resistance induced by the PEG-shell of PEGylated Hb to accommodate more PEG-chains as the level of PEGylation increases. Potential implications of extent of PEGylation on the oxygen delivery by PEG-Hb conjugate in vivo have been discussed.  相似文献   

2.
The influence of intramolecular cross-links on the molecular, structural and functional properties of PEGylated {PEG [poly(ethylene glycol)]-conjugated} haemoglobin has been investigated. The sites and the extent of PEGylation of haemoglobin by reductive alkylation are not influenced by the presence of an alphaalpha-fumaryl cross-link at Lys-99(alpha). The propylated hexaPEGylated cross-linked haemoglobin, (propyl-PEG5K)(6)-alphaalpha-Hb, exhibits a larger molecular radius and lower colloidal osmotic pressure than propylated hexaPEGylated non-cross-linked haemoglobin, (propyl-PEG5K)(6)-Hb. Perturbation of the haem microenvironment and the alpha1beta2 interface by PEGylation of haemoglobin is reduced by intramolecular cross-linking. Sedimentation velocity analysis established that PEGylation destabilizes the tetrameric structure of haemoglobin. (Propyl-PEG5K)(6)-Hb and (propyl-PEG5K)(6)-alphaalpha-Hb sediment as stable dimeric and tetrameric molecules, respectively. The betabeta-succinimidophenyl PEG-2000 cross-link at Cys-93(beta) outside the central cavity also influences the molecular properties of haemoglobin, comparable to that by the alphaalpha-fumaryl cross-link within the central cavity. However, the influence of the two cross-links on the oxygen affinity of PEGylated haemoglobin are very distinct, indicating that the high oxygen affinity of PEGylated haemoglobin is not a direct consequence of the dissociation of the haemoglobin tetramers into dimers. alphaalpha-Fumaryl cross-linking is preferred to modulate both oxygen affinity and molecular properties of PEGylated haemoglobin, and cross-linking outside the central cavity could only modulate molecular properties of PEGylated haemoglobin. It is suggested that PEGylation induces a hydrodynamic drag on haemoglobin and this plays a role in the microcirculatory properties of PEGylated haemoglobin.  相似文献   

3.
A new hexaPEGylated hemoglobin, (TCP-PEG5K)6-Hb (TCP, thiocarbamoyl phenyl) has been developed using PEG-phenyl-isothiocyanate and its vasoactivity and structure has been investigated. Of the six PEG5K chains of (TCP-PEG5K)6-Hb, 4 are conjugated to the α-amino groups of Hb, and the other 2 chains are distributed on ε-amino groups, identified as Lys-40(α) (~45%), Lys-56(α) (~25%), and Lys-8(β) (~24%). The studies with hamster infused with a bolus of a 4 gm % solution of (TCP-PEG5K)6-Hb equivalent to 10% of their blood volume have established that this new hexaPEGylated Hb is vasoinactive. The viscosity and the colloidal osmotic pressure of (TCP-PEG5K)6-Hb at 4% is 1.9 cP and 69.7 mmHg, respectively. The molecular radius of (TCP-PEG5K)6-Hb is about 4.6 nm and is significantly smaller than hexaPEGylated Hbs developed using other direct and extension arm facilitated PEGylation platform. The presence of an outside the central cavity intramolecular crosslink, succinimidophenyl-PEG2K between Cys-93(β, β′) in (TCP-PEG5K)6-ββ-Hb strongly impacts its solution properties. These patterns of influence suggest that the inter-dimeric interactions in (TCP-PEG5K)6-Hb is weakened just as with other direct PEGylation platforms, and (SP-PEG5K)6-Hb generated by EAF-PEGylation is unique in not inducing this effect. A comparison of the properties of hexaPEGylated Hbs establishes that rigidity of the conjugation linkage between PEG and Hb plays a significant influence on the resultant dictating solution properties and/structure/conformation of PEG-Hb adduct.  相似文献   

4.
PEGylation induced changes in molecular volume and solution properties of HbA have been implicated as potential modulators of its vasoconstrictive activity. However, our recent studies with PEGylated Hbs carrying two PEG chains/Hb, have demonstrated that the modulation of the vasoconstrictive activity of Hb is not a direct correlate of the molecular volume and solution properties of the PEGylated Hb and implicated a role for the surface charge and/or the pattern of surface decoration of Hb with PEG. HbA has now been modified by thiolation mediated maleimide chemistry based PEGylation that does not alter its surface charge and conjugates multiple copies of PEG5K chains. This protocol has been optimized to generate a PEGylated Hb, (SP-PEG5K)6-Hb, that carries ~six PEG5K chains/Hb – HexaPEGylated Hb. PEGylation increased the O2 affinity of Hb and desensitized the molecule for the influence of ionic strength, pH, and allosteric effectors, presumably a consequence of the hydrated PEG-shell generated around the protein. The total PEG mass in (SP-PEG5K)6-Hb, its molecular volume, O2 affinity and solution properties are similar to that of another PEGylated Hb, (SP-PEG20K)2-Hb, that carries two PEG20K chains/Hb. However, (SP-PEG5K)6-Hb exhibited significantly reduced vasoconstriction mediated response than (SP-PEG20K)2-Hb. These results demonstrate that the enhanced molecular size and solution properties achieved through the conjugation of multiple copies of small PEG chains to Hb is more effective in decreasing its vasoconstrictive activity than that achieved through the conjugation of a comparable PEG mass using a small number of large PEG chains.  相似文献   

5.
HexaPEGylated hemoglobin (Hb), a non-hypertensive Hb, exhibits high O2 affinity, which makes it difficult for it to deliver the desired levels of oxygen to tissues. The PEGylation of very low O2 affinity Hbs is now contemplated as the strategy to generate PEGylated Hbs with intermediate levels of O2 affinity. Toward this goal, a doubly modified Hb with very low O2 affinity has been generated. The amino terminal of the beta-chain of HbA is modified by 2-hydroxy, 3-phospho propylation first to generate a low oxygen affinity Hb, HPPr-HbA. The oxygen affinity of this Hb is insensitive to DPG and IHP. Molecular modeling studies indicated potential interactions between the covalently linked phosphate group and Lys-82 of the trans beta-chain. To further modulate the oxygen affinity of Hb, the alpha alpha-fumaryl cross-bridge has been introduced into HPPr-HbA in the mid central cavity. The doubly modified HbA (alpha alpha-fumaryl-HPPr-HbA) exhibits an O2 affinity lower than that of either of the singly modified Hbs, with a partial additivity of the two modifications. The geminate recombination and the visible resonance Raman spectra of the photoproduct of alpha alpha-fumaryl-HPPr-HbA also reflect a degree of additive influence of each of these modifications. The two modifications induced a synergistic influence on the chemical reactivity of Cys-93(beta). It is suggested that the doubly modified Hb has accessed the low affinity T-state that is non-responsive to effectors. The doubly modified Hb is considered as a potential candidate for generating PEGylated Hbs with an O2 affinity comparable to that of erythrocytes for developing blood substitutes.  相似文献   

6.
As a potential hemoglobin (Hb)-based oxygen carrier (HBOC), the PEGylated Hb has received much attention for its non-nephrotoxicity. However, PEGylation can adversely alter the structural and functional properties of Hb. The site of PEGylation is an important factor to determine the structure and function of the PEGylated Hb. Thus, protection of some sensitive residues of Hb from PEGylation is of great significance to develop the PEGylated Hb as HBOC. Here, Cys-93(β) of Hb was conjugated with 20 kDa polyethylene glycol (PEG20K) through hydrazone and disulfide bonds. Then, the conjugate was modified with PEG5K succinimidyl carbonate (PEG5K-SC) using acylation chemistry, followed by removal of PEG20K Hb with hydrazone hydrolysis and disulfide reduction. Reversible conjugation of PEG20K at Cys-93(β) can protect Lys-95(β), Val-1(α) and Lys-16(α) of Hb from PEGylation with PEG5K-SC. The autoxidation rate, oxygen affinity, structural perturbation and tetramer instability of the PEGylated Hb were significantly decreased upon protection with PEG20K. The present study is expected to improve the efficacy of the PEGylated Hb as an oxygen therapeutic.  相似文献   

7.
High hydrodynamic volume, high viscosity and high colloidal osmotic pressure (COP) of PEGylated hemoglobin (Hb) have been suggested to neutralize the vasoactivity of acellular Hb. Consequences of non-conservative PEGylation (positive charge of the amino groups at the PEGylation sites is neutralized) using succinimidyl-ester of propionic acid PEG5K on the properties of PEGylated Hb have now been investigated. Non-conservative PEGylation of Hb leads to a much higher increase in the COP and viscosity of Hb than conservative extension arm facilitated (EAF) PEGylation of Hb. Introduction of alphaalpha-fumaryl crosslinking decreased the COP of non-conservative PEGylated Hb by stabilization of interdimeric interactions. Compared to the EAF-PEGylated alphaalpha-fumaryl Hb, non-conservative PEGylated product shows a comparable COP and higher viscosity. Conservative PEGylation of alphaalpha-fumaryl Hb by reductive alkylation chemistry does not increase the COP to this level, but enhanced the molecular volume and viscosity comparable to EAF-PEGylated product. Thus, the molecular properties of PEGylated Hb can be fine tuned using different PEGylation platforms and provide a unique opportunity for the design of second generation PEGylated Hbs.  相似文献   

8.
Hu T  Li D  Manjula BN  Acharya SA 《Biochemistry》2008,47(41):10981-10990
The PEGylated hemoglobin (Hb) has been evaluated as a potential blood substitute. In an attempt to understand the autoxidation of the PEGylated Hb, we have studied the autoxidation of the PEGylated Hb site-specifically modified at Cys-93(beta) or at Val-1(beta). PEGylation of Hb at Cys-93(beta) perturbed the heme environment and increased the autoxidation rate of Hb, which is at a higher level than that caused by PEGylation at Val-1(beta). The perturbation of the heme environment of Hb is attributed to the maleimide modification at Cys-93(beta) and not due to conjugation of the PEG chains. However, the PEG chains enhance the autoxidation and the H 2O 2 mediated oxidation of Hb. Accordingly, the PEG chains are assumed to increase the water molecules in the hydration layer of Hb and enhance the autoxidation by promoting the nucleophilic attack of heme. The autoxidation rate of the PEGylated Hb does not show an inverse correlation with the oxygen affinity. The H 2O 2 mediated structural loss and the heme loss of Hb are increased by maleimide modification at Cys-93(beta) and further decreased by conjugation of the PEG chains. The autoxidation of the PEGylated Hbs is attenuated significantly in the plasma, possibly due to the presence of the antioxidant species in the plasma. This result is consistent with the recent suggestion that there is no direct correlation between the in vitro and in vivo autoxidation of the PEGylated Hb. Therefore, the pattern of PEGylation can be manipulated for the design of the PEGylated Hb with minimal autoxidation.  相似文献   

9.
The design of the extension arm-facilitated PEGylation (EAFP) of proteins takes advantage of the high selective and quantitative aspects of the thiol-maleimide reaction. However, the efficiency of EAFP with hemoglobin varied with the batches of maleimide-PEG. The low level of functionalization of monomethoxy-PEG (mPEG) as maleimide-PEG has been now investigated as the potential source of this variation. New chemical approaches for the estimation of the functionalization of mPEG using the reaction of the thiol groups of glutathione, dithiothreitol, and hemoglobin with maleimide-PEG have been developed. The single-step modular approach to the synthesis of maleimidophenyl-PEG (MPPEG) that involved the condensation of p-maleimidophenyl isocyanate with mPEG has been optimized to generate a product with an overall purity of 80%. The NMR approach correlates well with the estimates made by the new chemical approaches. Commercial maleimide-PEG reagents synthesized using multiple steps exhibited a lower level of functionalization as reflected by these chemical estimations. The better functionalization of MPPEG increases the efficiency of EAFP as reflected by the generation of hexaPEGylated Hb and the masking of the D antigen of RBCs. This new EAFP protocol is expected to improve the cost effectiveness of the generation of hexaPEGylated Hb, PEGylated albumin, and PEGylated RBCs as new PEGylated therapeutics.  相似文献   

10.
Hemoglobin zeta(2)beta(2)(S) is generated by substituting embryonic zeta-globin subunits for the normal alpha-globin components of Hb S (alpha(2)beta(2)(S)). This novel hemoglobin has recently been shown to inhibit polymerization of Hb S in vitro and to normalize the pathological phenotype of mouse models of sickle cell disease in vivo. Despite its promise as a therapeutic tool in human disease, however, the basic O(2)-transport properties of Hb zeta(2)beta(2)(S) have not yet been described. Using human hemoglobins purified from complex transgenic-knockout mice, we show that Hb zeta(2)beta(2)(S) exhibits an O(2) affinity as well as a Hill coefficient, Bohr response, and allosteric properties in vitro that are suboptimally suited for physiological O(2) transport in vivo. These data are substantiated by in situ analyses demonstrating an increase in the O(2) affinity of intact erythrocytes from mice that express Hb zeta(2)beta(2)(S). Surprisingly, though, co-expression of Hb zeta(2)beta(2)(S) leads to a substantial improvement in the tissue oxygenation of mice that model sickle cell disease. These analyses suggest that, in the context of sickle cell disease, the beneficial antisickling effects of Hb zeta(2)beta(2)(S) outweigh its O(2)-transport liabilities. The potential structural bases for the antisickling properties of Hb zeta(2)beta(2)(S) are discussed in the context of these new observations.  相似文献   

11.
Hemoglobin-vesicles (HbV) have been developed for use as artificial O(2) carriers in which a purified Hb solution is encapsulated within a phospholipid bilayer membrane. In this study, bovine Hb (BHb) was tested as a source of HbV instead of human Hb (HHb). We compared the preparation process and characteristics of BHbV with those of HHbV. The purification of BHb was effectively performed simply with an ultrafiltration system including a process for removing virus and scrapie reagent. The removal ratio of the phospholipid components of bovine red blood cells was over 99.99%, and the protein purity was over 99.9%. The deoxygenated and carbonylated BHb showed denaturation transition temperatures at 83 and 87 degrees C, respectively, which are higher than those of HHb (80 and 78 degrees C, respectively), and resistant to pasteurization (60 degrees C, 10 h). The purified BHb was concentrated to over 40 g/dl, and encapsulated in a phospholipid bilayer membrane to form BHbV with a diameter of about 280 nm. The O(2) affinity (P(50)) of the BHbV was regulated by coencapsulation of an appropriate amount of Cl(-) (as NaCl), which binds to BHb as an allosteric effector, in the range 16-28 Torr, comparable to human blood (P(50) = 28 Torr). This is quite simple in comparison with HHb which requires phosphate derivatives such as pyridoxal 5'-phosphate as a replacement for 2,3-diphoshoglyceric acid. The viscosity and colloid osmotic pressure of the BHbV when suspended in 5% human serum albumin are 3.5 cP and 20 Torr, respectively, comparable to those of human blood. In conclusion, BHb can be used as a source for the production of HbV, not only because of its abundance in the cattle industry, but also because of the physicochemical advantages of the purification process, thermal stability, and regulation of O(2) affinity in comparison with HHb.  相似文献   

12.
The bimodal gill(water)/gut(air)-breathing Amazonian catfish Hoplosternum littorale that frequents hypoxic habitats uses "mammalian" 2,3-diphosphoglycerate (DPG) in addition to "piscine" ATP and GTP as erythrocytic O(2) affinity modulators. Its electrophoretically distinct anodic and cathodic hemoglobins (Hb(An) and Hb(Ca)) were isolated for functional and molecular characterization. In contrast to Hb(An), phosphate-free Hb(Ca) exhibits a pronounced reverse Bohr effect (increased O(2) affinity with decreasing pH) that is obliterated by ATP, and opposite pH dependences of K(T) (O(2) association constant of low affinity, tense state) and the overall heat of oxygenation. Dose-response curves indicate small chloride effects and pronounced and differentiated phosphate effects, DPG < ATP < GTP < IHP. Hb(Ca)-O(2) equilibria analyzed in terms of the Monod-Wyman-Changeux model show that small T state bond energy differences underlie the differentiated phosphate effects. Synthetic peptides, corresponding to N-terminal fragment of the cytoplasmic domain of trout band 3 protein, undergo oxygenation-linked binding to Hb(Ca), suggesting a metabolic regulatory role for this hemoglobin. The amino acid sequences for the alpha and beta chains of Hb(Ca) obtained by Edman degradation and cDNA sequencing show unusual substitutions at the phosphate-binding site that are discussed in terms of its reverse Bohr effect and anion sensitivities.  相似文献   

13.
A ring fluorinated heme, 13,17-bis(2-carboxylatoethyl)-3,8-diethyl-2-fluoro-7,12,18-trimethyl-porphyrinatoiron(III), has been incorporated into human adult hemoglobin (Hb A). The heme orientational disorder in the individual subunits of the protein has been readily characterized using (19)F NMR and the O(2) binding properties of the protein have been evaluated through the oxygen equilibrium analysis. The equilibrated orientations of hemes in alpha- and beta- subunits of the reconstituted protein were found to be almost completely opposite to each other, and hence were largely different from those of the native and the previously reported reconstituted proteins [T. Jue, G.N. La Mar, Heme orientational heterogeneity in deuterohemin-reconstituted horse and human hemoglobin characterized by proton nuclear magnetic resonance spectroscopy, Biochem. Biophys. Res. Commun. 119 (1984) 640-645]. Despite the large difference in the degree of the heme orientational disorder in the subunits of the proteins, the O(2) affinity and the cooperativity of the protein reconstituted with 2-MF were similar to those of the proteins reconstituted with a series of hemes chemically modified at the heme 3- and 8-positions [K. Kawabe, K. Imaizumi, Z. Yoshida, K. Imai, I. Tyuma, Studies on reconstituted myoglobins and hemoglobins II. Role of the heme side chains in the oxygenation of hemoglobin, J. Biochem. 92 (1982) 1713-1722], whose O(2) affinity and cooperativity were higher and lower, respectively, relative to those of native protein. These results indicated that the heme orientational disorder could exert little effect, if any, on the O(2) affinity properties of Hb A. This finding provides new insights into structure-function relationship of Hb A.  相似文献   

14.
We investigated the interaction of the cesium ion (Cs(+)) with the anionic intracellular components of human red blood cells (RBCs); the components studied included 2,3-bisphosphoglycerate (BPG), ADP, ATP, inorganic phosphate (P(i)), carbonmonoxy hemoglobin (COHb), and RBC membranes. We used spin-lattice (T(1)) and spin-spin (T(2)) (133)Cs NMR relaxation measurements to probe Cs(+) binding, and we found that Cs(+) bound more strongly to binding sites in BPG and in RBC membranes than in any other intracellular component in RBCs at physiologic concentrations. By using James-Noggle plots, we obtained Cs(+) binding constants per binding site in BPG (66 +/- 8 M(-1)), ADP (19 +/- 1 M(-1)), ATP (25 +/- 3 M(-1)), and RBC membranes (55 +/- 2 M(-1)) from the observed T(1) values. We also studied the effect of Cs(+) on the oxygen (O(2)) affinity of purified Hb and of Hb in intact RBCs in the absence and in the presence of BPG. In the absence of BPG, the O(2) affinity of Hb decreased upon addition of Cs(+). However, in the presence of BPG, the O(2) affinity of Hb increased upon addition of Cs(+). The O(2) affinity of Cs(+)-loaded human RBCs was larger than that of Cs(+)-free cells at the same BPG level. (31)P NMR studies on the pH dependence of the interaction between BPG and Hb indicated that the presence of Cs(+) resulted in a smaller fraction of BPG available to bind to the cleft of deoxyHb. Our NMR and O(2) affinity data indicate that a strong binding site for Cs(+) in human RBCs is BPG. A partial mechanism for Cs(+) toxicity might arise from competition between Cs(+) and deoxyHb for BPG, thereby increasing oxygenation of Hb in RBCs, and thus decreasing the ability of RBCs to give up oxygen in tissues. The presence of Cs(+) at 12.5 mM in intact human RBCs containing BPG at normal concentrations did not, however, alter significantly the O(2) affinity of Hb, thus ruling out the possibility of Cs(+)-BPG interactions accounting for Cs(+) toxicity in this cell type.  相似文献   

15.
Human hemoglobin (Hb) conjugated to benzene tetracarboxylate substituted dextran produces a polymeric Hb (Dex-BTC-Hb) with similar oxygen affinity to that of red blood cells (P(50)=28-29 mm Hg). Under physiological conditions, the oxygen affinity (P(50)) of Dex-BTC-Hb is 26 mm Hg, while that of native purified human HbA(0) is 14 mm Hg, but it exhibits a slight reduction in cooperativity (n(50)), Bohr effect, and lacks sensitivity to inositol hexaphosphate (IHP), when compared to HbA(0). Oxygen-binding kinetics, measured by rapid mixing stopped-flow method showed comparable oxygen dissociation and association rates for both HbA(0) and Dex-BTC-Hb. The rate constant for NO-mediated oxidation of the oxy form of Dex-BTC-Hb, which is governed by NO entry to the heme pocket, was reduced to half of the value obtained for HbA(0). Moreover, Dex-BTC-Hb is only slightly more sensitive to oxidative reactions than HbA(0), as shown by about 2-fold increase in autoxidation, and slightly higher H(2)O(2) reaction and heme degradation rates. Dextran-BTC-based modification of Hb produced an oxygen-carrying compound with increased oxygen release rates, decreased oxygen affinity and reduced nitric oxide scavenging, desirable properties for a viable blood substitute. However, the reduction in the allosteric function of this protein and the lack of apparent quaternary T-->R transition may hinder its physiological role as an oxygen transporter.  相似文献   

16.
Acclimatization to hypoxia requires time to complete the adaptation mechanisms that influence oxygen (O(2)) transport and O(2) utilization. Although decreasing hemoglobin (Hb) O(2) affinity would favor the release of O(2) to the tissues, increasing Hb O(2) affinity would augment arterial O(2) saturation during hypoxia. This study was designed to test the hypothesis that pharmacologically increasing the Hb O(2) affinity will augment O(2) transport during severe hypoxia (10 and 5% inspired O(2)) compared with normal Hb O(2) affinity. RBC Hb O(2) affinity was increased by infusion of 20 mg/kg of 5-hydroxymethyl-2-furfural (5HMF). Control animals received only the vehicle. The effects of increasing Hb O(2) affinity were studied in the hamster window chamber model, in terms of systemic and microvascular hemodynamics and partial pressures of O(2) (Po(2)). Pimonidazole binding to hypoxic areas of mice heart and brain was also studied. 5HMF decreased the Po(2) at which the Hb is 50% saturated with O(2) by 12.6 mmHg. During 10 and 5% O(2) hypoxia, 5HMF increased arterial blood O(2) saturation by 35 and 48% from the vehicle group, respectively. During 5% O(2) hypoxia, blood pressure and heart rate were 58 and 30% higher for 5HMF compared with the vehicle. In addition, 5HMF preserved microvascular blood flow, whereas blood flow decreased to 40% of baseline in the vehicle group. Consequently, perivascular Po(2) was three times higher in the 5HMF group compared with the control group at 5% O(2) hypoxia. 5HMF also reduced heart and brain hypoxic areas in mice. Therefore, increased Hb O(2) affinity resulted in hemodynamics and oxygenation benefits during severe hypoxia. This acute acclimatization process may have implications in survival during severe environmental hypoxia when logistic constraints prevent chronic acclimatization.  相似文献   

17.
Bovine and human hemoglobin (Hb) form the basis for many different types of Hb-based O(2) carriers (HBOCs) ranging from chemically modified Hbs to particle encapsulated Hbs. Hence, the development of a facile purification method for preparing ultrapure Hb is essential for the reliable synthesis and formulation of HBOCs. In this work, we describe a simple process for purifying ultrapure solutions of bovine and human Hb. Bovine and human red blood cells (RBCs) were lyzed, and Hb was purified from the cell lysate by anion exchange chromatography. The initial purity of Hb fractions was analyzed by SDS-PAGE. Pure Hb fractions (corresponding to a single band on the SDS-PAGE gel) were pooled together and the overall purity and identity assessed by LC-MS. LC-MS analysis yielded two peaks corresponding to the calculated theoretical molecular weight of the alpha and beta chains of Hb. The activity of HPLC pure Hb was assessed by measuring its oxygen affinity, cooperativity and methemoglobin level. These measures of activity were comparable to values in the literature. Taken together, our results demonstrate that ultrapure Hb (electrophoresis and HPLC pure) can be easily prepared via anion exchange chromatography. In general, this method can be more broadly applied to purify hemoglobin from any source of RBC. This work is significant, since it outlines a simple method for generating ultrapure Hb for synthesis and/or formulation of HBOCs.  相似文献   

18.
Sega MF  Chu H  Christian J  Low PS 《Biochemistry》2012,51(15):3264-3272
The partial pressure of oxygen constitutes an important factor in the regulation of human erythrocyte physiology, including control of cell volume, membrane structure, and glucose metabolism. Because band 3 is thought to be involved in all three processes and because binding of hemoglobin (Hb) to the cytoplasmic domain of band 3 (cdb3) is strongly oxygen-dependent, the possibility that the reversible association of deoxyhemoglobin (deoxyHb) with cdb3 might constitute an O(2)-dependent sensor that mediates O(2)-regulated changes in erythrocyte properties arises. While several lines of evidence support this hypothesis, a major opposing argument lies in the fact that the deoxyHb binding sequence on human cdb3 is not conserved. Moreover, no effect of O(2) pressure on Hb-band 3 interactions has ever been demonstrated in another species. To explore whether band 3-Hb interactions might be widely involved in O(2)-dependent regulation of erythrocyte physiology, we undertook characterization of the effect of O(2) on band 3-Hb interactions in the mouse. We report here that murine band 3 binds deoxyHb with significantly greater affinity than oxyHb, despite the lack of significant homology within the deoxyHb binding sequence. We further map the deoxyHb binding site on murine band 3 and show that deletion of the site eliminates deoxyHb binding. Finally, we identify mutations in murine cdb3 that either enhance or eliminate its affinity for murine deoxyHb. These data demonstrate that despite a lack of homology in the sequences of both murine band 3 and murine Hb, a strong oxygen-dependent association of the two proteins has been conserved.  相似文献   

19.
In a recent study, ultrahigh molecular weight (Mw ) glutaraldehyde-polymerized bovine hemoglobins (PolybHbs) were synthesized with low O2 affinity and exhibited no vasoactivity and a slight degree of hypertension in a 10% top-load model.(1) In this work, we systematically investigated the effect of varying the glutaraldehyde to hemoglobin (G:Hb) molar ratio on the biophysical properties of PolybHb polymerized in either the low or high O2 affinity state. Our results showed that the Mw of the resulting PolybHbs increased with increasing G:Hb molar ratio. For low O2 affinity PolybHbs, increasing the G:Hb molar ratio reduced the O2 affinity and CO association rate constants in comparison to bovine hemoglobin (bHb). In contrast for high O2 affinity PolybHbs, increasing the G:Hb molar ratio led to increased O2 affinity and significantly increased the CO association rate constants compared to unmodified bHb and low O2 affinity PolybHbs. The methemoglobin level and NO dioxygenation rate constants were insensitive to the G:Hb molar ratio. However, all PolybHbs displayed higher viscosities compared to unmodified bHb and whole blood, which also increased with increasing G:Hb molar ratio. In contrast, the colloid osmotic pressure of PolybHbs decreased with increasing G:Hb molar ratio. To preliminarily evaluate the ability of low and high O2 affinity PolybHbs to potentially oxygenate tissues in vivo, an O2 transport model was used to simulate O2 transport in a hepatic hollow fiber (HF) bioreactor. It was observed that low O2 affinity PolybHbs oxygenated the bioreactor better than high O2 affinity PolybHbs. This result points to the suitability of low O2 affinity PolybHbs for use in tissue engineering and transfusion medicine. Taken together, our results show the quantitative effect of varying the oxygen saturation of bHb and G:Hb molar ratio on the biophysical properties of PolybHbs and their ability to oxygenate a hepatic HF bioreactor. We suggest that the information gained from this study can be used to guide the design of the next generation of hemoglobin-based oxygen carriers (HBOCs) for use in tissue engineering and transfusion medicine applications.  相似文献   

20.
Erythrocytes play a key role in human and vertebrate metabolism. Tissue O2 supply is regulated by both hemoglobin (Hb)-O2 affinity and erythrocyte rheology, a key determinant of tissue perfusion. Oxygenation-deoxygenation transitions of Hb may lead to re-organization of the cytoskeleton and signalling pathways activation/deactivation in an O2-dependent manner. Deoxygenated Hb binds to the cytoplasmic domain of the anion exchanger band 3, which is anchored to the cytoskeleton, and is considered a major mechanism underlying the oxygenation-dependence of several erythrocyte functions. This work discusses the multiple modes of Hb-cytoskeleton interactions. In addition, it reviews the effects of Mg2+, 2,3-diphosphoglycerate, NO, shear stress and Ca2+, all factors accompanying the oxygenation-deoxygenation cycle in circulating red cells. Due to the extensive literature on the subject, the data discussed here, pertain mainly to human erythrocytes whose O2 affinity is modulated by 2,3-diphosphoglycerate, ectothermic vertebrate erythrocytes that use ATP, and to bird erythrocytes that use inositol pentaphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号