首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reversible photoconversion of Chenopodium chlorophyll protein,CP668CP743, is strongly dependent on the pH of the solution.The photoconversion of CP668 was inhibited by a high pH, whereasa low pH inhibited the photoconversion of CP743. Transfer ofCP668 to an alkaline pH caused a red shift of the 277-nm bandin the UV absorption spectrum, whereas transfer of CP743 toan acidic pH caused a blue shift of the 280-nm band. The UVabsorption difference spectrum between the acidic and alkalinesolutions of CP668 showed a positive peak at 293 nm and a negativepeak at 272 nm. From the pH titration curve of CP668, the pKvalues of 9.4 and 11.1 were determined. The alkaline titrationcurve of the 293-nm band gave an inflection point at pH 11.2. S-S reagents, ß-mercaptoethanol and dithiothreitol,and KI were inhibitory to CP- 668 photoconversion, but SH reagents,N-ethylmaleimide and P-chloromercuribenzoic acid, were not.The chemical modification of tyrosine residues, and the destructionof S-S bridges in the apoprotein inhibited CP668 photoconversion. From these results we concluded that the reversible photoconversionis controlled by the conformation of the apoprotein in CP668. (Received June 28, 1975; )  相似文献   

2.
Photosensitive Chenopodium chlorophyll protein was purifiedby warming the complex in a boiling water bath, followed bypassing it through a Sephadex column. The shape and positionof the absorption band in the absorption spectrum of purifiedchlorophyll protein (HCP668) were the same as those of non-treatedchlorophyll protein (CP668), except for a change in the proteinband in the UV region. The chlorophyll protein retained a quarterof its original photoconvertibility after heat treatment for25 min at 100°C. Results suggested that the chlorophyll-aminoacid residue binding is very stable against heat, and that chlorophyllis protected from decomposition through the rigid binding. The photoconvertibility of HCP668, as well as CP668, dependedstrongly upon pH, with a pronounced decrease below pH 4 andabove pH 6. Optimal convertibility was at pH 5. Above pH 12,convertibility vanished completely. However, pH-inhibited convertibilityof HCP668 was recovered to its original level by returning thepH to neutral. Illuminalion of CP668 in D2O with red light caused a markedincrease in light scattering. This reveals the occurrence ofa conformational change of apoprotein, leading to aggregation. HCP668 was degraded by mechanical treatment to give a smallersized photosensitive chlorophyll protein without loss of photoconvertibility.This small chlorophyll protein did not precipitate in a saturated(NH4)2SO4 solution. The spectral properties of this complexwere identical to those of HCP668 and CP668. (Received March 21, 1972; )  相似文献   

3.
A water-soluble Chl a/b-protein complex, CP668, from Chenopodiumalbum converts to another form of protein complex, CP743, uponlight illumination. Structural changes of pigments and proteinsupon photoconversion were studied using resonance Raman (RR)and Fourier transform infrared (FTIR) spectroscopies. RR spectraof CP668 and CP743 and a light-induced FTIR difference spectrumshowed that the macrocyle C=C bands of Chl a in CP668 considerablychanged upon conversion to the pigment (not chemically identifiedyet) in CP743. The C=C band pattern of the RR spectrum of CP743was similar to that of bacteriochlorophyll a, suggesting thatthe conjugated system of the CP743 pigment resembles a bacteriochlorinring. Judging from the C=O frequencies, the 131-keto C=O groupsof Chl a and b in CP668 are free from hydrogen bonding, whereasthe 132-ester C=O groups of both Chl a and b and the 7-formylC=O of Chl b in CP668 are hydrogen bonded. Upon conversion toCP743, interactions of the 131-keto and 132-ester C=O groupswere basically unaffected, demonstrating no drastic changesaround these C=O groups. FTIR spectra in the amide I' regionof CP668 and CP743 in D2O buffer showed a peak at 1,633 cm–1,which represents a major component of ß-sheet conformation.Second-derivative spectra of the amide I' bands as well as alight-induced FTIR difference spectrum suggested that drasticchange in the protein conformation does not occur upon photoconversion. (Received November 1, 1998; Accepted December 24, 1998)  相似文献   

4.
Hagar WG 《Plant physiology》1979,63(6):1182-1186
The light-induced transient states of chlorophyll-protein 668 (Cp668) and its photoconverted from Cp743 were investigated using flash photolysis. Short lived transient species induced by a short flash were detected in both Cp668 and Cp743. The Cp668 transient had a half decay time of 2.0 milliseconds and showed a broad absorption band at 460 nanometers. The Cp743 transient had a half decay time of only 0.6 millisecond and had a major absorption peak at 410 nanometers in addition, to a broad absorption band around 530 nanometers. Both transient signals were quenched by oxygen. Cp668 had a temperature-dependent delayed fluorescence at room temperature with a half-life of 2.0 milliseconds, the same as the life-time of the absorption transient. This suggests that the transient species observed was a triplet state of chlorophyll.  相似文献   

5.
The relationship between structure and spectroscopic characteristicsof the watersoluble chlorophyll protein complex isolated fromstems of Lepidium virginicum (CP663S) was studied. Additionof 0.08% SDS induced a red shift of the 663 nm absorption maximum.At the same time, under excitation at 435 nm, the maximum offluorescence emission shifted from 672 nm to 675 nm and thefluorescence yield increased. When CP663S was excited at 480nm, the 660 nm emission band of chlorophyll b became more prominent.Fluorescence lifetime of emission from chlorophyll a increasedon addition of SDS. The energy transfer from chlorophyll b tochlorophyll a was decreased by the SDS addition, as judged bythe fluorescence spectra and lifetime measurement. Symmetricalpositive and negative peaks of the circular dichroism (CD) spectrumaround 669 nm, which indicate the interaction between chlorophylla molecules at short distances, disappeared after addition ofSDS. These SDS-induced changes of spectroscopic characteristicsoccurred in similar SDS concentration ranges and were reversible.SDS polyacrylamide gel electrophoresis cleaved CP663S into subunits.Chlorophyll molecules moved with protein moieties. Glutaraldehydetreatment suppressed the effects of SDS on absorption, fluorescenceand CD characteristics. We conclude that chlorophyll moleculesin CP663S are in the hydrophobic region of the protein and theinteraction between chlorophyll a molecules occurs at shortdistances. Changes of spectroscopic characteristics are a resultof cleavage of CP663S. 1Present address: National Institute for Basic Biology, Okazaki444, Japan. (Received November 22, 1982; Accepted May 31, 1983)  相似文献   

6.
The absorption spectra of a highly purified water-soluble chlorophyll-protein, CP 668, obtained from upper leaves of Atriplex hortensis L., and its phototransformation product have been measured and analyzed as sums of component curves. The difference spectrum before and after transformation has the same major peaks as those previously reported for a preparation from Chenopodium . The curve resolution indicates that, unlike some previous studies with preparations from other species of CP 668 from Atriplex , the main red band is a single, though somewhat unsymmetrical, component very much like the chlorophyll α 670 (Ca 670) common to all green plants. The "740" band of the phototransformed material, however, appears to have at least two components. The amounts of photoconversion of this pigment-protein was more extensive than any complex previously studied. The converted material had a far-red to red absorbance ratio of 2.6.  相似文献   

7.
Two types of water-soluble chlorophyll proteins were isolatedfrom Lepidium virginicum L. grown in Japan. The protein isolatedfrom the leaves (CP663L) had a low chlorophyll a/b ratio (1.5–1.7),and that from the stems (CP663S) had a high ratio (3.4–3.5).CP663S showed the same crystal forms and almost the same molecularweight and subunit composition as CP663I. (Received October 26, 1981; Accepted February 4, 1982)  相似文献   

8.
The absorption spectra of chlorophyll a were studied in aqueousdispersions of four major lipid components present in the thylakoidmembranes. Chlorophyll a in aqueous dispersions of uncharged galactolipidsrevealed two absorption bands, at 670 and 745 nm, when the molecularratio of chlorophyll to lipid was higher than 0.2. The latterband may be due to the formation of microcrystals of chlorophylla. Chlorophyll a in aqueous dispersions of negatively chargedlipids revealed a single absorption band at 670 nm. However,chlorophyll a was decomposed during measurement in these lipiddispersions. The absorption spectra of chlorophyll a in aqueous dispersionsof mixture of galactolipid and charged lipid were apparentlysimilar to those of chlorophyll a in the charged lipid dispersion.Chlorophyll a, however, was not decomposed in these aqueousdispersions of lipid mixtures. It is concluded that the presence of both galactolipid and chargedlipid are necessary to reconstruct the state of chlorophylla dissolved in the lipid phase in the thylakoid membranes. The red absorption band of chlorophyll a in the reconstructedsystem composed of chlorophyll a, charged and uncharged lipids,appeared at 670 nm with a half bandwidth of 22 nm. Analysisof the absorption spectrum in the fourth derivative and thecurve-fitting methods indicated that the red band was composedmainly of a single band with a peak at 670–671 nm. 1 Present address: Department of Biology, College of GeneralEducation, University of Tokyo, Komaba, Meguro-ku, Tokyo 153,Japan. (Received October 13, 1977; )  相似文献   

9.
Water-soluble chlorophyll (Chl)-binding proteins (WSCPs) have been found in various plants. WSCPs are categorized into two classes based on their photoconvertibility: Class I (photoconvertible) and Class II (non-photoconvertible). Based on their absorption peaks, which occur in the red wavelengths, the pre- and post-photoconverted forms of Chenopodium album WSCP (CaWSCP) are called CP668 and CP742, respectively. Although various biochemical and biophysical properties of CaWSCP have already been characterized, questions remain regarding the structural dynamics of the photoconversion from CP668 to CP742, and the relationship between the photoconversion activity and incident light wavelength. To address how the wavelength of incident light affects the photoconversion, we performed time-course analyses of CaWSCP photoconversion by using light-emitting diodes that emit either white light, or at the discrete wavelengths 670, 645, 525, 470, or 430 nm. The most efficient photoconversion was observed under irradiation at 430 nm. Less efficient photoconversion was observed under irradiation with 670, 645, 470, or 525 nm light, in that order. The relationship between photoconversion activity and wavelength corresponded with the absorption peak intensities of Chls in the CaWSCP complex. The observed time dependence of the A742/A668 ratio during photoconversion of the CaWSCP complex indicated that the photoconversion from CP668 to CP742 occurs in a three-step reaction, and that only three subunits in the complex could be photoconverted.  相似文献   

10.
Enhancement spectra for photosynthesis of intact leaves of higherplants were investigated by means of the rate of CO2 absorptionunder atmospheric conditions. Enhancement spectra for photosystem(system)II measured with a reference beam of 700 nm had twopronounced peaks at about 480 and 650 nm and lower humps at540–600 nm in all of the nine species tested. By the useof a rice mutant which lacks chlorophyll b, it was revealedthat the 650-nm peak and the middle humps in the spectrum canbe attributed mostly to chlorophyll b absorption, whereas the480-nm peak must be due to the absorption of carotenoids andchlorophyll b. Enhancement for system I in wheat had a peakat about 715 nm, and the maximum was much higher than that ofthe enhancement for system II. Enhancement between a red anda farred light for wheat was much greater for the farred lightthan for the red light in the presence of an excess amount ofthe other light. These results demonstrate that the enhancementphenomenon in higher plants is essentially the same as thatin green algae. (Received November 30, 1977; )  相似文献   

11.
We have identified a new minor chlorophyll a/b-protein complex in the thylakoid membranes of spinach (Spinacia oleracea L.), which migrates as a green band below CPII on mildly denaturing polyacrylamide gels. This complex, designated CP24, was isolated from octyl glucoside/sodium dodecyl sulfate solubilized spinach grana membrane fractions by preparative gel electrophoresis and has been characterized as to its spectral properties and polypeptide composition. CP24 has a room temperature absorption maximum at 668 nanometers, a chlorophyll a/b ratio between 0.8 and 1.2, and contains three or four polypeptides between 20 and 23 kilodaltons. CP24 was also identified in grana membrane preparations from peas (Pisum sativum) and barley (Hordeum vulgare). We postulate that CP24 functions as a linker component in photosystem II, acting to orient the photosystem II light harvesting components to ensure efficient energy transfer to the reaction center.  相似文献   

12.
The changes in chlorophyll-protein complexes (CPs) in cucumbercotyledons during illumination and subsequent dark incubationwere studied by SDS-polyacrylamide gel electrophoresis. Whenetiolated cucumber seedlings were illuminated, chlorophyll wassynthesized and CPs were formed. In the early phase of greening(6 h of illumination), light-harvesting chlorophyll a/b-proteincomplex (LHCP) was the main GP. As the greening proceeded, P700chlorophyll a-protein complex (CP1) accumulated. When 6-h illuminatedseedlings were transferred to darkness, CP1 accumulated concomitantlywith a decrease in LHCP without new chlorophyll synthesis. Thechanges in the amounts of CPs in the dark became smaller withthe progress of greening and were not observed after 72 h ofillumination. These changes were confirmed by examining thechlorophyll/P700 ratio and the low temperature absorption spectrumof cotyledons. These results suggest that in the early phaseof greening, CPs were unstable and their chlorophyll moleculeseasily exchanged with those of other kinds of CPs. (Received October 14, 1982; Accepted December 1, 1982)  相似文献   

13.
SDS-solubilized thylakoid membranes of Bryopsis maxima showeda similar pattern to those of higher plants in SDS-poIyacrylamidegel electrophoresis. Absorption spectra and pigment compositionof both CP1 and CPa bands were similar to those of higher plantsand other algae. Five bands containing chlorophyll (Chl) b weredivided into three categories; a group of major light-harvestingChl a/b-protein complexes (LHCP 1, LHCP 2 and LHCP 3), a minorLHCP (LHCP 3') and a photosystem I complex (CP1a). LHCP 1, thehigh molecular form, showed the lowest Chl a/b ratio among theLHCPs, and contained only xanthophylls as carotenoids. LHCP2, LHCP 3 and LHCP 3' bands contained xanthophylls and carotene.Carotenoid composition of LHCP 3' was different from that ofthe major LHCPs. CP1a band contained a considerable amount ofsiphonaxanthin and siphonein. (Received May 24, 1985; Accepted December 13, 1985)  相似文献   

14.
Absorption and fluorescence spectra in the red region of water-soluble chlorophyll proteins, Lepidium CP661, CP663 and Brassica CP673, pigment System II particles of spinach chloroplasts and chlorophyll a in diethylether solution at 25°C were analyzed by the curve-fitting method (French, C.S., Brown, J.S. and Lawrence, M.C. (1972) Plant Physiol. 49, 421–429). It was found that each of the chlorophyll forms of the chlorophyll proteins and the pigment System II particles had a corresponding fluorescence band with the Stokes shift ranging from 0.6 to 4.0 nm.The absorption spectrum of chlorophyll a in diethylether solution was analyzed to one major band with a peak at 660.5 nm and some minor bands, while the fluorescence spectrum was analyzed to one major band with a peak at 664.9 nm and some minor bands. A mirror image was clearly demonstrated between the resolved spectra of absorption and fluorescence. The absorption spectrum of Lepidium CP661 was composed of a chlorophyll b form with a peak at 652.8 nm and two chlorophyll a forms with peaks at 662.6 and 671.9 nm. The fluorescence spectrum was analyzed to five component bands. Three of them with peaks at 654.8, 664.6 and 674.6 nm were attributed to emissions of the three chlorophyll forms with the Stokes shift of 2.0–2.7 nm. The absorption spectrum of Brassica CP673 had a chlorophyll b form with a peak at 653.7 nm and four chlorophyll a forms with peaks at 662.7, 671.3, 676.9 and 684.2 nm. The fluorescence spectrum was resolved into seven component bands. Four of them with peaks at 666.7, 673.1, 677.5 and 686.2 nm corresponded to the four chlorophyll a forms with the Stokes shift of 0.6–4.0 nm. The absorption spectrum of the pigment System II particles had a chlorophyll b form with a peak at 652.4 nm and three chlorophyll a forms with peaks at 662.9, 672.1 and 681.6 nm. The fluorescence spectrum was analyzed to four major component bands with peaks at 674.1, 682.8, 692.0 and 706.7 nm and some minor bands. The former two bands corresponded to the chlorophyll a forms with peaks at 672.1 and 681.6 nm with the Stokes shift of 2.0 and 1.2 nm, respectively.Absorption spectra at 25°C and at ?196°C of the water-soluble chlorophyll proteins were compared by the curve-fitting method. The component bands at ?196°C were blue-shifted by 0.8–4.1 nm and narrower in half widths as compared to those at 25°C.  相似文献   

15.
The Photosystem II (PSII) core antenna complexes, CP43 and CP47, were prepared from spinach (Spinacia oleracea L.). The absorption spectra in the red region at room temperature were recorded for the PSII core antenna samples after increased temperature treatment (up to 80 degrees C). Derivative and difference spectra revealed the existence of two groups of chlorophyll a (Chl a) molecules in both CP43 and CP47. The one with the absorption peak in the shorter wavelength region was designated as CP43-669 and CP47-669, while the other with the absorption peak in the longer wavelength region was designated as CP43-682 and CP47-680. The results of the thermal treatment experiment demonstrated that CP43-669 and CP47-669 may exist as monomers of Chl a and that their binding sites on the polypeptides are insensitive to thermal treatment, whereas CP43-682 and CP47-680 may exist as dimers or multimers of Chl a and their binding regions in the polypeptide chains are more sensitive to heat treatment. The excitation energy transfer mechanism between these two different groups of Chl a molecules is also analyzed.  相似文献   

16.
Absorption and fluorescence spectra in the red region of water-soluble chlorophyll proteins, Lepidium CP661, CP663 and Brassica CP673, pigment System II particles of spinach chloroplasts and chlorophyll a in diethylether solution at 25 degrees C were analyzed by the curve-fitting method (French, C.S., Brown, J.S. and Lawrence, M.C. (1972) Plant Physiol 49, 421--429). It was found that each of the chlorophyll forms of the chlorophyll proteins and the pigment System II particles had a corresponding fluorescence band with the Stokes shift ranging from 0.6 to 4.0 nm. The absorption spectrum of chlorophyll a in diethylether solution was analyzed to one major band with a peak at 660.5 nm and some minor bands, while the fluorescence spectrum was analyzed to one major band with a peak at 664.9 nm and some minor bands. A mirror image was clearly demonstrated between the resolved spectra of absorption and fluorescence. The absorption spectrum of Lepidium CP661 was composed of a chlorophyll b form with a peak at 652.8 nm and two chlorophyll a forms with peaks at 662.6 and 671.9 nm. The fluorescence spectrum was analyzed to five component bands. Three of them with peaks at 654.8, 664.6 and 674.6 nm were attributed to emissions of the three chlorophyll forms with the Stokes shift of 2.0--2.7 nm. The absorption spectrum of Brassica CP673 had a chlorophyll b form with a peak at 653.7 nm and four chlorophyll a forms with peaks at 662.7, 671.3, 676.9 and 684.2 nm. The fluorescence spectrum was resolved into seven component bands. Four of them with peaks at 666.7, 673.1, 677.5 and 686.2 nm corresponded to the four chlorophyll a forms with the Stokes shift of 0.6--4.0 nm. The absorption spectrum of the pigment System II particles had a chlorophyll b form with a peak at 652.4 nm and three chlorophyll a forms with peaks at 662.9, 672.1 and 681.6 nm. The fluorescence spectrum was analyzed to four major component bands with peaks at 674.1, 682.8, 692.0 and 706.7 nm and some minor bands. The former two bands corresponded to the chlorophyll a forms with peaks at 672.1 and 681.6 nm with the Stokes shift of 2.0 and 1.2 nm, respectively. Absorption spectra at 25 degrees C and at --196 degrees C of the water-soluble chlorophyll proteins were compared by the curve-fitting methods. The component bands at --196 degrees C were blue-shifted by 0.8--4.1 nm and narrower in half widths as compared to those at 25 degrees C.  相似文献   

17.
Upon illumination of etiolated maize leaves the photoconversion of protochlorophyllide Pchlide 655/650 into chlorophyllide Chlide 684/676 was observed. It was shown that chlorophyllide Chlide 684/676 in the dark is transformed into pheophytin Pheo 679/675 and chlorophyll Chl 671/668 by means of two parallel reactions, occurring at room temperature: Chlide 684/676. The formed pheophytin Pheo 679/675 was unstable and in the dark was transformed into chlorophyll Chl 671/668 in a few seconds: Pheo 679/675 Chl 671/668. The last reaction is reversed by the light: Chl/668 Pheo 679/675. Thus, on the whole in the greening etiolated leaves this process occurs according to the following scheme:The observed light-regulated interconversion of Mg-containing and Mg-free chlorophyll analogs is activated by ATP and inhibited by AMP.Abbreviations Chl- chlorophyll - Chlide- chlorophyllide - Pchlide- protochlorophyllide - Pheo- pheophytin - PS II RC- Photosystem II reaction centres. Abbreviations for native pigment forms: the first number after the pigment symbol corresponds to the maximum position of the low-temperature fluorescence band (nm), the second number to the maximum position of the longwave absorption band  相似文献   

18.
We investigated the effects of near-infrared irradiation on the photoconversion of Chenopodium album water-soluble chlorophyll-binding protein (CaWSCP) in the presence of sodium hydrosulfite and found a further photoconversion from CP742 to CP763, a novel form of CaWSCP. Interestingly, one-third of the absorption peak at 668 nm was recovered in CP763, but re-irradiation under oxidative conditions eliminated the photo convertibility of CaWSCP.  相似文献   

19.
Spectral properties, particularly fluorescence spectra and their time-dependent behavior, were investigated for a mutant of the cyanobacterium Synechocystis sp. PCC 6803 lacking the 43 kDa chlorophyll-protein (CP43, PsbC). Lack of CP43 was confirmed by a size shift of the corresponding gene and by Western blotting. The CP43-deletion mutant grown under heterotrophic conditions accumulated a small amount of photosystem (PS) II, but virtually no PS II fluorescence was observed. A 686-nm fluorescence band was clearly observed by phycocyanin excitation, coming from the terminal pigments of phycobilisomes. In contrast, no PS I fluorescence was detected by phycocyanin excitation when accumulation of PS II components was not proved by a fluorescence excitation spectrum, indicating that energy transfer to PS I chlorophyll a was mediated by PS II chlorophyll a. Direct connection of phycobilisomes with PS I was not suggested. Based on these fluorescence properties, the energy flow in the CP43-deletion mutant cells is discussed.  相似文献   

20.
Lamella preparations of spinach, Chlorella, Phaeodactylum, Anabatnaand Porphyra were treated with a hydrophobic reagent, lutein,and the absorption and fluorescence spectra in the red regionbefore and after treatment were compared for changes causedby the treatment. Absorption spectra of all these preparationsunderwent the same spectral change, transformation of a bandat 684 nm into a band at 666 nm. The longer the maximum wavelengthof the red peak, the greater was the fractional absorbance decreaseat 684 nm. The content of C684 (the chlorophyll form responsiblefor the 684 nm band) in the lamellae was estimated from thefractional decreases as being progressively higher in the orderof Phaeodactylum, Porphyra, Anabatna, Chlorella and spinach.The fluorescence spectra at liquid nitrogen temperature beforetreatment showed two bands. The longer wavelength band was transformedby the treatment into a shorter wavelength band(s), as describedbelow, according to the maximum wavelengths: spinach, F735F695(or F686); Chlorella, F715F700 (or F686); Phaeodactylum, anunidentified componentF690; Anabaena, F732F685 (or F695); Porphyra,F726F683. These chlorophyll forms with fluorescence maxima between715 and 735 nm were, therefore, designated C684 based on absorptionspectrophotometry, and are considered to play a role in photosystemII. (Received August 15, 1972; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号