首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Elimination of maternal expression of the Drosophila RNA-binding protein Lark results in female sterility. Here we show that this is due to a requirement during oogenesis. Developing oocytes from lark(1) germline clones (GLCs) are often smaller than normal due to defects in nurse cell cytoplasmic "dumping." Late-stage egg chambers from lark(1) GLCs contain low levels of cortical and ring canal associated actin and completely lack nurse cell cytoplasmic F-actin bundles, suggesting the "dumping" phenotype is due to a defect in the actin cytoskeleton. Localization of Hu-li tai shao (Hts) protein, a component of ring canals, is also disrupted in these mutants. In addition to the dumpless phenotype, we observed a buildup of late-stage egg chambers, a phenotype that correlates with the decrease in egg-laying observed in the mutants. We postulate that this phenotype is due to defects in the cytoskeletal integrity of eggs since retained and oviposited eggs are fragile and often deflated. These mutant phenotypes are likely due to disruption of an RNA-binding function of Lark as similar phenotypes were observed in flies carrying specific RNA-binding domain mutations. We propose that Lark functions during oogenesis as an RNA-binding protein, regulating mRNAs required for nurse cell transport or apoptosis.  相似文献   

3.
4.
5.
TheDrosophila larkgene encodes an essential RNA-binding protein of the RNA recognition motif (RRM) class that is required during embryonic development. Genetic analysis demonstrates that it also functions as a molecular element of a circadian clock output pathway, mediating the temporal regulation of adult emergence in the fruitfly. We now report the molecular characterization of a human gene with significant similarity tolark.Based on fluorescencein situhybridization and radiation hybrid mapping, the human gene has been localized to chromosome region 11q13; it is closely linked to several identified genes including the locus of Bardet–Biedl syndrome type 1. Thelark-homologous human gene expresses a single 1.8-kb size class of mRNA in most or all tissues including brain. Additional database searches have identified a mouse counterpart that is virtually identical to the human protein. Similar to lark protein, both mammalian proteins contain two copies of the RRM-type consensus RNA-binding motif. Unlike most RRM family members, however, theDrosophilaand mammalian proteins also contain a retroviral-type (RT) zinc finger that is situated 43 residues C-terminal to the second RRM element. Within a 184-residue segment spanning the RRM elements and the RT zinc finger, the human and mouse proteins are 61% similar to theDrosophilalark sequence. These common sequence features and comparisons among a large collection of RRM proteins suggest that the human and mouse proteins represent homologues ofDrosophilalark.  相似文献   

6.
A hallmark of germline cells throughout the animal kingdom is their ability to execute meiosis. However, despite its prime importance, little is known about how germline progenitors acquire this ability. In Drosophila, the primordial germ cells (PGCs) are characterized by the inheritance of germ plasm, which contains maternal factors that have sufficient ability to direct germline development. Here, we show that a novel maternal factor, MAMO, is autonomously required in PGCs to produce functional gametes. MAMO protein which contains both a BTB/POZ (Broad Complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) domain and C(2)H(2) zinc finger motifs is enriched in PGCs during embryogenesis. The PGCs with reduced maternal MAMO activity are able to undergo oogenesis, but fail to execute meiosis properly. In the resulting oocytes, meiosis-specific chromosomal configurations are impaired. We additionally show that the decondensation of fertilized sperm nuclei is also affected in the eggs. We propose that maternal MAMO activates downstream genes to promote specialized morphological changes of both female meiotic chromosomes and the sperm nucleus, which are critical in zygote formation.  相似文献   

7.
VASA is an ATP-dependent RNA helicase belonging to the DEAD-box family that, in many organisms, is specifically expressed in germ line cells throughout the life cycle, making it a powerful molecular marker to study germ line development. To obtain further information on germ line development in crustaceans, we cloned VASA cDNAs from three branchiopod species: water fleas Daphnia magna and Moina macrocopa, and brine shrimp Artemia franciscana. RNA helicase domains in branchiopod VASA were highly conserved among arthropod classes. However, N-terminal RNA-binding domains in branchiopod VASA were highly diverged and, unlike other arthropod VASA reported so far, possessed repeats of retroviral-type zinc finger (CCHC) motifs. Raising specific antibodies against Daphnia VASA revealed that the primordial germ cells (PGCs) in this organism segregate at a very early cleavage stage of embryogenesis in parthenogenetic and sexual eggs. Clusters of PGCs then start to migrate inside the embryo and finally settle at both sides of the intestine, the site of future gonad development. RNA analyses suggested that maternally supplied vasa mRNA was responsible for early VASA expression, while zygotic expression started during blastodermal stage of development.  相似文献   

8.
9.
10.
Kamping A  Katju V  Beukeboom LW  Werren JH 《Genetics》2007,175(3):1321-1333
The parasitic wasp Nasonia vitripennis has haplo-diploid sex determination. Males develop from unfertilized eggs and are haploid, whereas females develop from fertilized eggs and are diploid. Females and males can be easily distinguished by their morphology. A strain that produces individuals with both male and female features (gynandromorphs) is studied. We provide data on female/male patterning within and between individuals, on environmental effects influencing the occurrence of gynandromorphism, and on its pattern of inheritance. A clear anterior/posterior pattern of feminization is evident in gynandromorphic individuals that developed from unfertilized haploid eggs. The proportion of gynandromorphic individuals can be increased by exposing the mothers to high temperature and also by exposing embryos at early stages of development. Selection for increased gynandromorph frequency was successful. Backcross and introgression experiments showed that a combination of a nuclear and a heritable cytoplasmic component causes gynandromorphism. Analyses of reciprocal F(2) and F(3) progeny indicate a maternal effect locus (gyn1) that maps to chromosome IV. Coupled with previous studies, our results are consistent with a N. vitripennis sex determination involving a maternal/zygotic balance system and/or maternal imprinting. Genetics and temperature effects suggest a temperature-sensitive mutation of a maternally produced masculinizing product that acts during a critical period in early embryogenesis.  相似文献   

11.
Summary Fertilized and unfertilized C57BL/6J eggs were microsurgically enucleated and then analyzed for their capacity to synthesize proteins using 2-dimensional polyacrylamide gel electrophoresis. In both types of enucleated eggs (cytoplasts), protein synthesis continued and was still detected up to three days in culture. Shortly after enucleation, the pattern of polypeptides remained similar to the respective non-operated control eggs but it later became gradually reduced in intensity and complexity. After two days of culture the appearance of some new proteins typical for 2-cell embryos was observed in enucleated fertilized eggs only. Our findings suggest that maternal mRNA stored during oogenesis is utilized during the preimplantation period.  相似文献   

12.
Molecular genetic analysis indicates that rhythmic changes in the abundance of the Drosophila lark RNA-binding protein are important for circadian regulation of adult eclosion (the emergence or ecdysis of the adult from the pupal case). To define the tissues and cell types that might be important for lark function, we have characterized the spatial and developmental patterns of lark protein expression. Using immunocytochemical or protein blotting methods, lark can be detected in late embryos and throughout postembryonic development, from the third instar larval stage to adulthood. At the late pupal (pharate adult) stage, lark protein has a broad pattern of tissue expression, which includes two groups of crustacean cardioactive peptide (CCAP)-containing neurons within the ventral nervous system. In other insects, the homologous neurons have been implicated in the physiological regulation of ecdysis. Whereas lark has a nuclear distribution in most cell types, it is present in the cytoplasm of the CCAP neurons and certain other cells, which suggests that the protein might execute two different RNA-binding functions. Lark protein exhibits significant circadian changes in abundance in at least one group of CCAP neurons, with abundance being lowest during the night, several hours prior to the time of adult ecdysis. Such a temporal profile is consistent with genetic evidence indicating that the protein serves a repressor function in mediating the clock regulation of adult ecdysis. In contrast, we did not observe circadian changes in CCAP neuropeptide abundance in late pupae, although CCAP amounts were decreased in newly-emerged adults, presumably because the peptide is released at the time of ecdysis. Given the cytoplasmic localization of the lark RNA-binding protein within CCAP neurons, and the known role of CCAP in the control of ecdysis, we suggest that changes in lark abundance may regulate the translation of a factor important for CCAP release or CCAP cell excitability.  相似文献   

13.
Summary Mammalian gametogenesis results in the production of highly specialized cells, sperm and oocytes, that are complementary in their arsenal of organelles and molecules necessary for normal embryonic development. Consequently, some of the zygotic structures, as illustrated in this review on the centrosome, are a combination of complementary paternal and maternal contributions. Mammalian oocytes are deprived of their centrioles during oogenesis, yet at the same time they generate a huge cytoplasmic reserve of centrosomal proteins. The active centrosome of spermatogenic stem cells is reduced to a single centriole that does not possess microtubule-nucle-ating activity. This centrosomal activity is restored at fertilization, when the sperm centriole is released into the oocyte cytoplasm, from which it attracts the oocyte-derived proteins of pericentriolar material and ultimately converts itself into an active zygotic centrosome. Subsequently, the microtubules around the zygotic centrosome are organized into a radial array called the sperm aster, that guides the apposition of male and female pronuclei, and the union of paternal and maternal genomes in the cytoplasm of a fertilized oocyte. The original sperm centriole duplicates and gives rise to the first mitotic spindle. This biparental mode of centrosome inheritance is seen in most mammals, except for rodents, where both centrioles are degraded during spermiogenesis and the zygotic centrosome is organized without any paternal contributions. The studies of centrosomal inheritance at fertilization provide the platform for designing new safe methods of assisted-reproduction and infertility treatments in humans.  相似文献   

14.
In honeybees, the haplodiploid sex determination system promotes a unique embryogenesis process wherein females develop from fertilized eggs and males develop from unfertilized eggs. However, the developmental strategies of honeybees during early embryogenesis are virtually unknown. Similar to most animals, the honeybee oocytes are supplied with proteins and regulatory elements that support early embryogenesis. As the embryo develops, the zygotic genome is activated and zygotic products gradually replace the preloaded maternal material. The analysis of small RNA and mRNA libraries of mature oocytes and embryos originated from fertilized and unfertilized eggs has allowed us to explore the gene expression dynamics in the first steps of development and during the maternal-to-zygotic transition (MZT). We localized a short sequence motif identified as TAGteam motif and hypothesized to play a similar role in honeybees as in fruit flies, which includes the timing of early zygotic expression (MZT), a function sustained by the presence of the zelda ortholog, which is the main regulator of genome activation. Predicted microRNA (miRNA)-target interactions indicated that there were specific regulators of haploid and diploid embryonic development and an overlap of maternal and zygotic gene expression during the early steps of embryogenesis. Although a number of functions are highly conserved during the early steps of honeybee embryogenesis, the results showed that zygotic genome activation occurs earlier in honeybees than in Drosophila based on the presence of three primary miRNAs (pri-miRNAs) (ame-mir-375, ame-mir-34 and ame-mir-263b) during the cleavage stage in haploid and diploid embryonic development.  相似文献   

15.
The mechanisms responsible for maintaining genomic methylation imprints in mouse embryos are not understood. We generated a knockout mouse in the Zfp57 locus encoding a KRAB zinc finger protein. Loss of just the zygotic function of Zfp57 causes partial neonatal lethality, whereas eliminating both the maternal and zygotic functions of Zfp57 results in a highly penetrant embryonic lethality. In oocytes, absence of Zfp57 results in failure to establish maternal methylation imprints at the Snrpn imprinted region. Intriguingly, methylation imprints are reacquired specifically at the maternally derived Snrpn imprinted region when the zygotic Zfp57 is present in embryos. This suggests that there may be DNA methylation-independent memory for genomic imprints. Zfp57 is also required for the postfertilization maintenance of maternal and paternal methylation imprints at multiple imprinted domains. The effects on genomic imprinting are consistent with the maternal-zygotic lethality of Zfp57 mutants.  相似文献   

16.
17.
18.
LARK is an essential Drosophila RNA-binding protein of the RNA recognition motif (RRM) class that functions during embryonic development and for the circadian regulation of adult eclosion. LARK protein contains three consensus RNA-binding domains: two RRM domains and a retroviral-type zinc finger (RTZF). To show that these three structural domains are required for function, we performed a site-directed mutagenesis of the protein. The analysis of various mutations, in vivo, indicates that the RRM domains and the RTZF are required for wild-type LARK functions. RRM1 and RRM2 are essential for viability, although interestingly either domain can suffice for this function. Remarkably, mutation of either RRM2 or the RTZF results in the same spectrum of phenotypes: mutants exhibit reduced viability, abnormal wing and mechanosensory bristle morphology, female sterility, and flightlessness. The severity of these phenotypes is similar in single mutants and double RRM2; RTZF mutants, indicating a lack of additivity for the mutations and suggesting that RRM2 and the RTZF act together, in vivo, to determine LARK function. Finally, we show that mutations in RRM1, RRM2, or the RTZF do not affect the circadian regulation of eclosion, and we discuss possible interpretations of these results. This genetic analysis demonstrates that each of the LARK structural domains functions in vivo and indicates a pleiotropic requirement for both the LARK RRM2 and RTZF domains.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号