首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aqueous two-phase systems are composed of aqueous solutions of either two water-soluble polymers, usually polyethylene glycol (PEG) and dextran (Dx), or a polymer and a salt, usually PEG and phosphate or sulfate. Partitioning of proteins in such systems provides a powerful method for separating and purifying mixtures of biomolecules by extraction. If one of the phase forming polymers is a crosslinked gel, then the solution-controlled gel sorption may be considered as a modification of aqueous two-phase extraction. Since PEG/dextran systems are widely used in aqueous two-phase extraction and dextran gels (Sephadex) are common chromatographic media, we choose a PEG/dextran gel system as a model system in this study. The partitioning behavior of pure bovine serum albumin (BSA) in PEG/dextran gel systems is investigated to see the effects of variations in PEG and NaCl concentrations on the partition coefficient K. By making use of the Box-Wilson experimental design, K is shown to be maximized at 9.8 (%, w/w) PEG and 0.2 M NaCl concentrations, respectively, as 182.  相似文献   

2.
In this paper we explore an alternative process for the purification of human antibodies from a Chinese hamster ovary (CHO) cell supernatant comprising a ligand-enhanced extraction capture step and cation exchange chromatography (CEX). The extraction of human antibodies was performed in an aqueous two-phase system (ATPS) composed of dextran and polyethylene glycol (PEG), in which the terminal hydroxyl groups of the PEG molecule were modified with an amino acid mimetic ligand in order to enhance the partition of the antibodies to the PEG-rich phase. This capture step was optimized using a design of experiments and a central composite design allowed the determination of the conditions that favor the partition of the antibodies to the phase containing the PEG diglutaric acid (PEG-GA) polymer, in terms of system composition. Accordingly, higher recovery yields were obtained for higher concentrations of PEG-GA and lower concentrations of dextran. The highest yield experimentally obtained was observed for an ATPS composed of 5.17% (w/w) dextran and 8% (w/w) PEG-GA. Higher purities were however predicted for higher concentrations of both polymers. A compromise between yield and purity was achieved using 5% dextran and 10% PEG-GA, which allowed the recovery of 82% of the antibodies with a protein purity of 96% and a total purity of 63%, determined by size-exclusion chromatography. ATPS top phases were further purified by cation exchange chromatography and it was observed that the most adequate cation exchange ligand was carboxymethyl, as the sulfopropyl ligand induced the formation of multi-aggregates or denatured forms. This column allowed the elution of 89% of the antibodies present in the top phase, with a protein purity of 100% and a total purity of 91%. The overall process containing a ligand-enhanced extraction step and a cation exchange chromatography step had an overall yield of 73%.  相似文献   

3.
Correlations to describe the effect of surface hydrophobicity and charge of proteins with their partition coefficient in aqueous two-phase systems were investigated. Polyethylene glycol (PEG) 4000/phosphate, sulfate, citrate, and dextran systems in the presence of low (0.6% w/w) and high (8.8% w/w) levels of NaCl were selected for a systematic study of 12 proteins. The surface hydrophobicity of the proteins was measured by ammonium sulfate precipitation as the inverse of their solubility. The hydrophobicity values measured correlated well with the partition coefficients, K, obtained in the PEG/salt systems at high concentration of NaCl (r = 0.92-0.93). In PEG/citrate systems the partition coefficient correlated well with protein hydrophobicity at low and high concentrations of NaCl (r = 0.81 and 0.93, respectively). The PEG/citrate system also had a higher hydrophobic resolution than other systems to exploit differences in the protein's hydrophobicity. The surface charge and charge density of the proteins was determined over a range of pH (3-9) by electrophoretic titration curves; PEG/salt systems did not discriminate well between proteins of different charge or charge density. In the absence of NaCl, K decreased slightly with increased positive charge. At high NaCl concentration, K increased as a function of positive charge. This suggested that the PEG-rich top phase became more negative as the concentration of NaCl in the systems increased and, therefore, attracted the positively charged proteins. The effect of charge was more important in PEG/dextran systems at low concentrations of NaCl. In the PEG/dextran systems at lower concentration of NaCl, molecular weight appeared to be the prime determinant of partition, whereas no clear effect of molecular weight could be found in PEG/salt systems.  相似文献   

4.
R I MacDonald 《Biochemistry》1985,24(15):4058-4066
To determine whether polyethylene glycol (PEG) causes growth of liposomes by affecting them directly or indirectly, vesicles composed of phosphatidylcholine were exposed to increasing concentrations of Mr 15 000-20 000 PEG or Mr 40 000 dextran either by direct mixing or across a dialysis membrane. After incubation at room temperature and dilution below at least 5% (w/w) polymer, the vesicles were monitored for fluorescence energy transfer and for absorbance at 400 nm. PEG induced the same levels of dequenching or lipid mixing and increased turbidity, regardless of whether the vesicles had been mixed directly with or dialyzed against PEG. These changes occurred within 5-15 min of polymer application. It is concluded that the increased lipid mixing and/or increased turbidity, indicating vesicle growth, resulted from an indirect effect of PEG on the vesicles--most likely dehydration. Dextran, in contrast to PEG, induced less dequenching and/or less turbidity increase when vesicles were directly mixed with, as opposed to dialyzed against, dextran. Although dextran not in contact with vesicles and with osmotic activity comparable to PEG was able to cause a degree of membrane fusion similar to that of PEG, therefore, the dehydrating effect of dextran could be mitigated if it were allowed to interact with vesicles. In further support of membrane dehydration as a precursor to membrane fusion, lipid mixing among sonicated and sonicated, frozen-thawed vesicles dialyzed against sucrose increased as a function of sucrose concentration. Vesicle morphology generally determined the maximal degree of membrane fusion inducible by the polymers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Previously we reported the augmentative effect of nonionic hydrophilic polymers such as polyethylene glycol (PEG), polyvinyl alcohol (PVA) and dextran on thyroid-stimulating antibody (TSAb) activity in porcine thyroid cell assays. We examined whether a similar phenomenon occurs in FRTL-5 thyroid cells and CHO cells expressing the human (h) TSH receptor (CHO-hTSHR cells). As with porcine thyroid cells, PEG 22.5% precipitated crude IgG from serum of patients with Graves' disease, significantly increased cAMP production as compared with PEG 12.5% precipitated crude IgG in both FRTL-5 cells and CHO-hTSHR cells. PEG 5% augmented purified-TSAb-IgG-stimulated cAMP production in both cell assays. TSAb activities and positivity by the direct assay using whole serum (0.05 ml) in the presence of 5% PEG in untreated Graves' patients were significantly increased as compared with the absence of 5% PEG. The augmentative effects of PVA 10% or dextran T-70 10% on TSAb-IgG-stimulated cAMP production were also observed in both cell assays. PVA 10% did not augment TSH-stimulated cAMP production in spite of weak augmentation by dextran 10% in both cell assays. Lack of the augmentative effects of PEG 5%, PVA 10% and dextran 10% on cAMP produced by GTPgammaS, forskolin and pituitary adenylate cyclase activating polypeptide was observed in both cell assays. The augmentative effects of these polymers in both cell assays similar to porcine thyroid cells suggest that there is no apparent species specificity among human, porcine and rat thyroid cells as far as TSH receptor linked cAMP production in cell membranes existed.  相似文献   

6.
During recombinant Escherichia coli fermentation with high expression levels, inclusion bodies are often formed. Aqueous two-phase systems have been used in the presence of urea for the initial recovery steps. To investigate phase behavior of such systems we determined phase diagrams of poly(ethylene glycol) (PEG)/sodium sulfate/urea/water and PEG/dextran T-500 (DEX)/urea/phosphate buffer/water at different concentrations of urea and different molecular weight of PEG. PEG/Na2SO4 aqueous two-phase systems could be obtained including up to 30% w/w urea at 25 degrees C and PEG/dextran T-500 up to 35% w/w urea. The binodial was displaced toward higher concentrations with increasing urea concentrations. The partition coefficient of urea was near unity. An unstable mutant of T4-lysozyme with an amino acid replacement in the core (V149T) was used to analyze the effect of phase components on the conformation of the enzyme. We showed that partitioning of tryptophan was not dependent on the concentration of urea in the phase system.  相似文献   

7.
采用考马斯亮蓝G250染色法测得室温下BSA在PEG/dextran双水相体系中的分配系数。以BSA在PEG/dextran体系的下相富集为目标,研究了PEG的分子量、浓度、dextran浓度以及所加入中性盐的种类与浓度、体系pH诸因素对其分配特性的影响。实验结果表明,在PEG4000/dextran体系中,采用PEG质量分数9%-dextran质量分数9%的浓度组成,同时在pH=7.0,NaC l浓度为0.2 mol.L-1或pH6.0,NaC l浓度为0.34 mol.L-1的工艺条件下萃取BSA均可达最小分配系数,其值为0.014。  相似文献   

8.
We have characterized the surface activity of different-sized poly(ethylene-glycols) (PEG; M(r) 200-100,000 Da) in the presence or absence of lipid monolayers and over a wide range of bulk PEG concentrations (10(-8)-10% w/v). Measurements of the surface potential and surface pressure demonstrate that PEGs interact with the air-water and lipid-water interfaces. Without lipid, PEG added either to the subphase or to the air-water interface forms relatively stable monolayers. Except for very low molecular weight polymers (PEGs < 1000 Da), low concentrations of PEG in the subphase (between 10(-5) and 10(-4)% w/v) increase the surface potential from zero (with respect to the potential of a pure air-water interface) to a plateau value of approximately 440 mV. At much higher polymer concentrations, > 10(-1)% (w/v), depending on the molecular weight of the PEG and corresponding to the concentration at which the polymers in solution are likely to overlap, the surface potential decreases. High concentrations of PEG in the subphase cause a similar decrease in the surface potential of densely packed lipid monolayers spread from either diphytanoyl phosphatidylcholine (DPhPC), dipalmitoyl phosphatidylcholine (DPPC), or dioleoyl phosphatidylserine (DOPS). Adding PEG as a monolayer at the air-water interface also affects the surface activity of DPhPC or DPPC monolayers. At low lipid concentration, the surface pressure and potential are determined by the polymer. For intermediate lipid concentrations, the surface pressure-area and surface potential-area isotherms show that the effects due to lipid and PEG are not always additive and that the polymer's effect is distinct for the two lipids. When PEG-lipid-mixed monolayers are compressed to surface pressures greater than the collapse pressure for a PEG monolayer, the surface pressure-area and surface potential-area isotherms approach that of the lipid alone, suggesting that for this experimental condition PEG is expelled from the interface.  相似文献   

9.
Gündüz U 《Bioseparation》2000,9(5):277-281
Partitioning of proteins in aqueous two-phase systems has been shown to provide a powerful method for separating and purifying mixtures of biomolecules by extraction. These systems are composed of aqueous solutions of either two water-soluble polymers, usually polyethylene glycol (PEG) and dextran (Dx), or a polymer and a salt, usually PEG and phosphate or sulfate. There are many factors which influence the partition coefficient K, the ratio of biomolecule concentration in the top phase to that in the bottom phase, in aqueous two-phase systems. The value of the partition coefficient relies on the physico-chemical properties of the target biomolecule and other molecules and their interactions with those of the chosen system. In this work, the partition behavior of pure bovine serum albumin in aqueous two-phase systems was investigated in order to see the effects of changes in phase properties on the partition coefficient K. The concentration of NaCl and pH were considered to be the factors having influence on K. Optimal conditions of these factors were obtained using the Box-Wilson experimental design. The optimum value of K was found as 0.0126 when NaCl concentration and pH were 0.14 M and 9.8, respectively, for a phase system composed of 8% (w/w) polyethylene glycol 3,350 - 9 (% w/w) dextran 37,500 - 0.05 M phosphate at 20 °C.  相似文献   

10.
Summary The electrochemical effect of a charged dextran derivative and the hydrophobic effect of hydrophobic chain PEG derivative on partitioning of six types of proteins in PEG/dextran aqueous two-phase systems were investigated- When 1. 6%(w/w)DEAE-dextran was present in the system,the partition coefficient decreased quickly with increasing pH value;when 0. 4% (w/w)PEG pentadecanoic acid ester was present in the system, the partition coefficient of protein with strong hydrophobicity was greatly increased. The experimental results show that the influence of hydrocarbon chain PEG derivative on partition coefficient is closely related to the hydrophobicity of proteins.  相似文献   

11.
A study was made to find out maximum partitioning of Bacillus licheniformis alkaline phosphatase in different ATPSs composed of different molecular weight of PEG X (X = 2000, 4000, 6000) with salts (magnesium sulphate, sodium sulphate, sodium citrate) and polymers (dextran 40, dextran T500). Physicochemical factors such as effect of system pH, system temperature and production media were evaluated for partitioning of alkaline phosphatase. PEG 4000 [9.0% (w/v)] and dextran T500 [9.6% (w/v)] were selected as most suitable system components for alkaline phosphatase production by B. licheniformis based on greater partition coefficient (k = 5.23). The two-phase system produced fewer enzymes than the homogeneous fermentation (control) in early stage of fermentation, but after 72 h the enzyme produced in the control system was less than that in the ATPS. Total alkaline phosphatase yield in ATPS fermentation was 3907.01 U/ml and in homogeneous fermentation 2856.50 U/ml.  相似文献   

12.
Two different series of hydrophobically modified proteins were partitioned in a number of aqueous two-phase systems (ATPS) to investigate the effect of hydrophobicity as a single property on partitioning. The modified proteins were derived from beta-lactoglobulin and bovine serum albumin (BSA). Measurement of the surface hydrophobicity of the proteins is important; hydrophobic interaction chromatography (HIC) was used for this purpose. The resolution of the systems (R) in terms of protein surface hydrophobicity and the intrinsic hydrophobicity (log P(0)) of the systems was established. The effect of the addition of NaCl to PEG/phosphate and PEG/dextran systems was analyzed in terms of the hydrophobicity difference between the phases and their ability to promote hydrophobic interactions between the protein surface and the PEG molecules. The values for R and log P(0) differed somewhat depending on which group of modified proteins was used for partitioning. The addition of NaCl to PEG/phosphate systems promoted an increase in the values of R, showing an important effect on the resolution of the systems for protein surface hydrophobicity (twice as high when compared with systems without NaCl). For PEG/dextran systems, the addition of 9% NaCl (w/w) promoted an improvement in the resolution toward surface hydrophobicity with an increase of 60% on the value of R. (c) 1996 John Wiley & Sons, Inc.  相似文献   

13.
In this study, we quantitatively measured the effects of the macromolecular crowding agents, polyethylene glycol 2000 (PEG 2000), dextran 70, and calf thymus DNA (CT DNA), on the refolding and aggregation of recombinant human brain-type creatine kinase (rHBCK) denatured by guanidine hydrochloride (GdnHCl). The results showed that there is more aggregation in the presence of either a single crowding agent or in a mixture of crowding agents than in the absence of crowding agents, especially in the presence of a mixture containing CT DNA and PEG 2000 (or dextran 70). In the presence of high concentrations of PEG 2000 (100 g/L), dextran 70 (100 g/L), and CT DNA (15 g/L), the refolding yield remarkably decreased from 70% to 20%, 52% and 57%, respectively. A remarkable decrease in the refolding yield and rate with mixed crowding agent containing CT DNA and PEG 2000 (or dextran 70) was also observed. In comparison to refolding in the presence of 100 g/L PEG 2000, the refolding yields and rates improved in the presence of a mixture of PEG 2000 and dextran 70. We speculate that the crowding agents can favor both correct folding and misfolding/aggregation of denatured-rHBCK. Though it is not known what combination of crowding agents most accurately reflects the physiological environment within a cell, we believe our study could contribute to the understanding of protein folding and the factors that contribute to proper conformation and function in the intracellular environment.  相似文献   

14.
Porcine organs are rapidly rejected after transplantation into primate recipients due to the presence of preexisting immunoglobulins that bind to terminal galactose alpha1,3 galactose residues (alpha-galactosyl) present on porcine glycoproteins and glycolipids. Currently available immunosuppressive reagents have been largely ineffective at controlling the synthesis of these anti-Gal antibodies. Nonantigenic hapten polymers have been shown to be effective materials for blocking humoral immune responses in various model systems. We have developed a series of alpha-galactosyl glycoconjugate polymers and tested their ability to block anti-Gal antibody binding in vitro and in vivo. A galactose alpha1,3 galactose beta 1,4 GlcNAc trisaccharide free acid (TRFA) with a hexanoic acid spacer, containing five methylene groups and a carboxylic acid, was produced and coupled to a variety of polymeric backbones including dextran, branched poly(ethylene glycol) (PEG), and poly-L-lysine. The ability of monomeric TRFA and the alpha-galactosyl conjugates to block anti-Gal IgG and IgM binding was determined using a competition ELISA assay on defined HSA-Gal glycoconjugates and porcine microvascular endothelial cell substrates. We show that branched PEG carriers, with a TRFA sugar attached to each branch, exhibit enhanced antibody blocking ability compared to TRFA, but at higher target antigen densities these simple PEG conjugates are no more effective then an equivalent amount of TRFA in blocking anti-Gal IgM antibody interactions. In contrast, polymers of the branched PEG conjugates and linear conjugates made using dextran and poly-L-lysine were 2000 to 70000-fold more effective inhibitors of anti-Gal antibodies. In a study using nonhuman primates, a single dose infusion of polymeric PEG or dextran glycoconjugates dramatically reduced the level of circulating anti-Gal antibodies in cynomologus monkeys for at least 72 h. Glycoconjugates similar to these might be useful both to block anti-Gal interactions in vivo and to specifically control the induced anti-Gal immune response.  相似文献   

15.
Dextransucrase (sucrose: 1,6-alpha-D-glucan 6-alpha-D-glucosyltransferase, EC 2.4.1.5) (3 IU/ml culture supernatant) was obtained by a modification of the method of Robyt and Walseth (Robyt, J.F. and Walseth, T.F. (1979) Carbohydr. Res. 68, 95-111) from a nitrosoguanidine mutant of Leuconostoc mesenteroides NRRL B-512F selected for high dextransucrase production. Dialyzed, concentrated culture supernatant (crude enzyme) was treated with immobilized dextranase (EC 3.2.1.11) and chromatographed on a column of Bio-Gel A-5m. The resulting, purified enzyme lost activity rapidly at 25 degrees C or on manipulation, as did the crude enzyme when diluted below 1 U/ml. Both enzyme preparations could be stabilized by low levels of high-molecular-weight dextran (2 micrograms/ml), poly(ethylene glycol) (e.g., 10 micrograms/ml PEG 20 000), or nonionic detergents (e.g., 10 micrograms/ml Tween 80). The stabilizing capacity of poly(ethylene glycol) and of dextran increased with molecular weight. Calcium had no stabilizing action in the absence of other additions, but reduced the inactivation that occurred in the presence of 0.5% bovine serum albumin or high concentrations (greater than 0.1%) of Triton X-100. In summary, dextransucrase could be stabilized against activity losses caused by heating or by dilution through the addition of low concentrations of nonionic polymers (dextran, PEG 20000, methyl cellulose) or of nonionic detergents at or slightly below their critical micelle concentrations.  相似文献   

16.
Summary Partition and production of the extracellular chitinase from Serratia marcescens were studied in PEG/dextran aqueous two-phase systems. The enzyme partitions into the bottom phase and the cells segregate into the top phase. The best system is 2% (w/v) PEG 20000 and 5% (w/v) dextran T500. The cell growth and enzyme production kinetics are similar in the aqueous two-phase system and in the polymer-free reference system. However, the maximum enzyme concentration in the former system is 1.5 times that in the latter one.  相似文献   

17.
Several chemical co-treatments were used to lower the threshold concentrations of poly(ethylene glycol) (PEG) required to induce fusion between turkey erythrocytes and between human erythrocytes. Concanavalin A was used in conjunction with 25% (w/w) PEG to induce turkey erythrocyte fusion. The fusion percentage increased with increasing concentrations of concanavalin A and the duration of concanavalin A treatment. In samples with high percentages of fusion, numerous hemispherical intramembrane particle-free zones (bubbles) in the plasma membrane were revealed by freeze-fracture electron microscopy. However, concanavalin A treatment did not facilitate fusion between human erythrocytes even at 35% PEG, although slight intramembrane particle patching was observed under this condition. Spermidine (0.05% w/v), trichloroacetic acid (100 mM) and ethanol (4% v/v) were found to promote fusion of human erythrocytes in 25% PEG. In all of these cases, intramembrane particle patching was observed by freeze-fracture electron microscopy in the presence of PEG. When applied alone, only ethanol caused a slight intramembrane particle patching. Neither dimethylsulfoxide (2% v/v), lysophosphatidylcholine (lysoPC, 0.15 mM), nor polylysine (mol. wt. 1000-4000, 0.05% w/v) promoted fusion of human erythrocyte in 25% PEG. None of these chemical treatments, alone, or in combination with PEG, caused intramembrane particle patching. We conclude that the positive effect of chemical treatments on PEG-induced cell fusion is closely related to the formation of intramembrane particle-free zones on the plasma membrane.  相似文献   

18.
Counter-current chromatography (CCC) using a cross-axis coil planet centrifuge (X-axis CPC) was applied to the purification of glucosyltransferase (GTF) from a cell-lysate of cariogenic bacteria. The purification was performed using an aqueous polymer two-phase system composed of 4.4% (w/w) polyethylene glycol (PEG) 8000-6% (w/w) dextran T500 containing 10mM phosphate buffer at pH 9.2 by eluting the upper phase (UP) at 1.0ml/min. The bacterial GTF in the cell-lysate of Streptococcus mutans was selectively retained in the dextran-rich lower stationary phase. The column contents were diluted and subjected to hydroxyapatite (HA) chromatography to remove the polymers from the GTF. Fractions eluted with 500mM potassium phosphate buffer were analyzed by GTF enzymatic activity as well as sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The GTF purity in the final product was increased about 87 times as that in the cell-lysate with a good recovery rate of about 79% through this purification process.  相似文献   

19.
The effective elimination of phycobiliproteins from crude enzyme preparation of the red alga Caloglossa continua (Okamura) King et Puttock (Ceramiales, Florideophyceae) was investigated in an aqueous two‐phase partitioning system (ATPS) by changing the concentrations of polyethylene glycol (PEG) and ammonium sulfate (AS). The phycobiliproteins shifted from the AS‐rich lower phase to the PEG‐rich upper phase in high PEG and AS concentrations. The best ATPS condition for the elimination of phycobiliproteins from the lower phase was obtained by the combination of 20% (weight/volume; w/v) PEG and 16% (w/v) AS. However, the recovery of aldolase and mannitol‐1‐phos‐phatase activities was significantly reduced. For purification of the enzymes, a combination of 15% (w/v) PEG and 16% (w/v) AS was the best ATPS condition, because a high specific activity and recovery of the enzymes were obtained. Under these conditions, 98% of the phycobiliproteins were removed from the lower phase. Therefore, the ATPS proved to be a very useful method as a first step in the purification of enzymes from red algae.  相似文献   

20.
This report continues or examination of the effect of genetically engineered charge modifications on the partitioning behavior of proteins in aqueous two-phase extration. The genetic modifications consisted of the fusion of charged peptide tails to beta-galactosidase and charge-change point mutations to T4 lysozyme. Our previous article examined the influence of these charge modifications on partitioning as a function of interfacial potential difference. In this study, we examined charge directed partitioning behavior in PEG/dextran systems containing small amounts of the charged polymers diethylaminoethyl-dextran (DEAE-dextran) or dextran sulfate. The best results were obtained when attractive forces between the protein and polymer were present. Nearly 100% of the beta-galactosidase, which carries a net negative charge, partitioned to the DEAE-dextran-rich phase regardless of whether the phase was dextran or PEG. In these cases, cloudiness of the protein-rich phases suggest that strong charge interactions resulted in protein/polymer aggregation, which may have contributed to the extreme partitioning. Unlike the potentialdriven partitioning reported previously, consistent partitioning trends were observed as a result of the fusion tails, with observed shifts in partition coefficient (K(p)) of up to 37-fold. However, these changes could not be solely attributed to charge-based interactions. Similarly, T4 lysozyme, carrying a net positive charge, partitioned to the dextran sulfate-containing phase, and displayed four- to sevenfold shifts in K(p) as a result of the point mutations. These shifts were two to four times stronger than those observed for potential driven partitioning. Little effect on partitioning was observed when the protein and polymer had the same charge, with the exception of beta-galactosidase with polyarginine tails. The high positive charge density of these tails provided for a localized interaction with the dextran sulfate, and resulted in 2- to 15-fold shifts in K(p). (c) 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号