首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 3,6-substituted 2,5-bis(1-aziridinyl)-1,4-benzoquinone derivatives was shown to alkylate calf thymus DNA and to form DNA interstrand cross-links. Alkylation and cross-link formation were enhanced after electrochemical reduction of the compounds and increased with lower pH in the pH range from 4.5 to 8.0. Reduction especially shifts the pH at which cross-linking and alkylation occurs to higher values, which are more physiologically relevant. This shift is probably caused by the increase in pKa value of the aziridine ring after reduction of the quinone moiety. The inactivation of single-stranded bacteriophage M13mp19 DNA to form phages in an E. coli host, by the 3,6-unsubstituted parent compound 2,5-bis(1-aziridinyl)-1,4-benzoquinone (TW13) was dependent upon reduction and pH in a similar way as was alkylation. The compound in our series with the least bulky, 3,6-substitutents, TW13, caused a high amount of cross-link formation. Compounds with methyl-substituted aziridine rings showed low cross-linking ability. Our results support the concept that the protonated reduced compound is the reactive species that alkylates DNA, and that steric factors play an important role in the reactivity towards DNA. A correlation is observed between the ability to induce DNA interstrand cross-links and inactivation of M13mp19 bacteriophage DNA. Cross-link formation was also demonstrated in E. coli K12 cells, where the compounds are reduced endogenously by bacterial reductases.  相似文献   

2.
A simple and rapid method of separating optical isomers of amino acids on a reversed-phase TLC plate, without using impregnated plates or a chiral mobile phase, is described. Amino acids derivatized with 1-fluoro-2,4-dinitrophenyl-5- -alanine amide were spotted on a reversed phase pre-coated TLC plate. Enantiomers of glutamate and aspartate were separated most effectively with solvent consisting of 25% acetonitrile in triethylamine-phosphate buffer (50 mM, pH 5.5) (v/v). Separation of - and -serine was achieved with 30% of acetonitrile solvent. The enantiomers of threonine, proline and alanine were separated with 35% of acetonitrile solvent, and those of methionine, valine, phenylalanine and leucine with 40% of acetonitrile solvent. The possibility of using TLC for quantitative determination of amino acid enantiomers was shown by the quantitative recovery of - and -alanine from the TLC plate in the range of 0.56–4.48 nmol.  相似文献   

3.
Hymenoxon, a toxic sesquiterpene lactone found in bitterweed, bound deoxyguanosine in a cell free system and formed adducts with guanine residues in cellular DNA. The reactive dialdehyde form of hymenoxon formed stable Schiff base products with deoxyguanosine which were separable from unreacted hymenoxon and deoxynucleosides by reverse phase high pressure liquid chromatography. Hymenoxon adducts which eluted as a single impure peak from the octadecylsilane column separated on amino and diphenyl-bonded phases with 10% methanol. Tritiated nucleoside adducts were isolated and purified from CFW mouse sarcoma cells treated with hymenoxon. Proton nuclear magnetic resonance spectra of purified hymenoxon-deoxyguanosine adducts revealed a loss of signals for hydroxyl groups in the bishemiacetal of hymenoxon. 13C-nuclear magnetic resonance spectra revealed that the major adduct has 35 carbon atoms, indicating an interaction of at least two guanine residues per hymenoxon molecule and suggesting that hymenoxon may cross-link DNA. Sedimentation analysis of treated DNA further showed that DNA cross-linking by hymenoxon (30 µg/ml) was equivalent to that of a known cross-linking agent, mitomycin C (7.5 µg/ml). Hymenoxon was more cytotoxic to DNA cross-link repair-deficient Chinese hamster ovary cell mutants than to repair proficient strains. These data combine to indicate that hymenoxon acts as a bifunctional alkylating agent which cross-links DNA in mammalian cells.CHO Chinese hamster ovary - HYM hymenoxon - MMC mitomycin C - NMR nuclear magnetic resonance - PBS phosphate buffered saline  相似文献   

4.
The macrocyclic antibiotics represent a relatively new class of chiral selectors in CE, HPLC, and TLC. We have examined the use of the macrocyclic antibiotic vancomycin as a chiral selector in HPLC for the separation of 1,4-dihydropyridines (DHPs) calcium antagonists (CAs). Chromatographic data of six 1,4-dihydropyridine calcium channel blockers obtained on the vancomycin chiral stationary phase (Chirobiotic V) were compared with those obtained on an alpha(1)-acid glycoprotein (AGP) HPLC stationary phase. Optimization of pH and organic modifier was carried out in order to modulate the retention properties of each system. All chiral neutral DHPs were resolved on the AGP column, whereas on Chirobiotic V only basic DHPs showed a split peak. The analytical chromatographic procedure on Chirobiotic V proved suitable for semipreparative separation, since the separation factor on the analytical column was high enough to obtain pure enantiomers with high yields.  相似文献   

5.
Investigation of individual drug enantiomers is required in pharmacokinetic and pharmacodynamic studies of drugs with a chiral centre. Cyclodextrins (CDs) are extensively used in high-performance liquid chromatography as stationary phases bonded to a solid support or as mobile phase additives in HPLC and capillary electrophoresis (CE) for the separation of chiral compounds. We describe here the basis for the liquid chromatographic and capillary electrophoretic resolution of drug enantiomers and the factors affecting their enantiomeric separation. This review covers the use of CDs and some of their derivatives in studies of compounds of pharmacological interest.  相似文献   

6.
To chiroptically characterize the enantiomers of omeprazole and some structurally related benzimidazoles with circular dichroism (CD), preparative chiral liquid chromatography was utilized for the isolation of the pure enantiomers. A limited analytical column screen was performed identifying Kromasil-CHI-TBB and the amylose-based phases Chiralpak AD and AS as possible chiral stationary phases (CSPs) for the preparative scale separation of the enantiomers of the different benzimidazoles. Optimization of the chromatographic conditions with respect to retention, enantioseparation, and resolution was achieved by variation of the mobile phase constituents as well as of temperature. Because of the lability of the compound in slightly acidic media, supercritical fluid chromatography (SFC) could not be applied for a preparative scale separation of the enantiomers. The separation of omeprazole was optimized to give high throughput (2.6 kg racemate/kg CSP/day) and high enantiomeric excess of the obtained isomers. The absolute configurations of the pure enantiomers of rabeprazole, lansoprazole, and pantoprazole were determined from the strong correlation to the CD spectrum of (+)-(R)-omeprazole. For all the compounds, the (+)-enantiomers displayed similar chiroptical features as (+)-(R)-omeprazole and were thus assigned the (R)- configuration. Elution order of the optical isomers was monitored by injecting racemic solutions spiked with one of the isomers and also by an on-line laser polarimeter. Both the type of CSP and also the mobile phase constituents had a strong effect on elution order of the enantiomers.  相似文献   

7.
A new analytical methodology was developed by EKC enabling the fast enantiomeric separation of Ornithine in complex mixtures of amino acids. A previous derivatization step with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) was achieved to enable the sensitive UV detection of amino acids as well as to make possible their interaction with the CDs employed as chiral selectors. A dual CD system containing an anionic and a neutral CD in phosphate buffer at acid pH showed a high resolving power allowing the enantiomeric separation of 18 protein amino acids and Orn. The method was applied to the analysis of fermented foods to investigate the extent of the presence of Orn enantiomers.  相似文献   

8.
The use of mathematically enhanced ultraviolet/visible (UV/VIS) absorbance spectral analysis and spectral contrast software techniques in high performance liquid chromatography (HPLC) and micellar electrokinetic capillary electrophoresis (MECC) as an aid for the determination of peak homogeneity, identification, and tracking during method development was investigated. Various structurally similar pharmaceutical compounds, and compounds present as either cis/trans isomers, diastereomers, or enantiomers were used as test compounds to probe the limits of this technique. Two tricyclic antidepressants, nortriptyline and imipramine, were employed to study the effects of HPLC mobile phase composition and pH on the ability to identify and track peaks during method development. It was found that method changes altered the spectral matches used for identification, but not enough to cause incorrect peak identification. It was also shown using HPLC that the cis/trans isomers of doxepin and the diastereomers ephedrine and pseudoephedrine could be distinguished. The mathematically enhanced spectral analysis and spectral contrast software techniques were also employed with MECC. Peaks tracking during method development as pH and the concentration of surfactant changes is shown for a separation of various penicillin type antibiotics. It was shown that during chiral MECC (CMECC) analyses ephedrine/pseudoephedrine diastereomers as well as ephedrine enantiomers could be distinguished. The determination of enantiomers is possible in CMECC since enantiomers are eluted as diastereomeric complexes, as opposed to HPLC where they are eluted in their native state. © 1996 Wiley-Liss, Inc.  相似文献   

9.
A novel method for chiral separation of flurbiprofen enantiomers was developed using aqueous two‐phase extraction (ATPE) coupled with biphasic recognition chiral extraction (BRCE). An aqueous two‐phase system (ATPS) was used as an extracting solvent which was composed of ethanol (35.0% w/w) and ammonium sulfate (18.0% w/w). The chiral selectors in ATPS for BRCE consideration were L‐dioctyl tartrate and L‐tryptophan, which were screened from amino acids, β‐cyclodextrin derivatives, and L‐tartrate esters. Factors such as the amounts of L‐dioctyl tartrate and L‐tryptophan, pH, flurbiprofen concentration, and the operation temperature were investigated in terms of chiral separation of flurbiprofen enantiomers. The optimum conditions were as follows: L‐dioctyl tartrate, 80 mg; L‐tryptophan, 40 mg; pH, 4.0; flurbiprofen concentration, 0.10 mmol/L; and temperature, 25 °C. The maximum separation factor α for flurbiprofen enantiomers could reach 2.34. The mechanism of chiral separation of flurbiprofen enantiomers is discussed and studied. The results showed that synergistic extraction has been established by L‐dioctyl tartrate and L‐tryptophan, which enantioselectively recognized R‐ and S‐enantiomers in top and bottom phases, respectively. Compared to conventional liquid–liquid extraction, ATPE coupled with BRCE possessed higher separation efficiency and enantioselectivity without the use of any other organic solvents. The proposed method is a potential and powerful alternative to conventional extraction for separation of various enantiomers. Chirality 27:650–657, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
Almost half of the drugs in use today are chiral. It is well established that the pharmacological activity is mostly restricted to one of the enantiomers (eutomer). There can be qualitative and quantitative differences in the activity of the enantiomers. In many cases, the inactive enantiomer (distomer) shows unwanted side effects or even toxic effects. Even if the side effects are not that drastic, the distomer has to be metabolized and this represents an unnecessary burden for the organism. Therefore, the development of methods for the separation of enantiomers, both on analytical and preparative scale, has become increasingly important. Chromatographic techniques such as thin layer chromatography (TLC), gas chromatography (GC), supercritical fluid chromatography (SFC), and above all high-performance liquid chromatography (HPLC) have been used for enantiomer separation for about two decades. More recently, electromigration techniques, such as capillary electrophoresis and capillary electrochromatography, have been shown to be powerful alternatives to chromatographic methods. This review gives a short overview of different chiral separation principles and their application. Several new developments are discussed.  相似文献   

11.
Orsi NM  Leese HJ 《Theriogenology》2004,61(2-3):561-572
Bovine serum albumin (BSA) is an embryotrophic macromolecule used in embryo culture media, which is commonly replaced with synthetic compounds, such as polyvinyl alcohol (PVA). This study compared the effect of BSA and PVA on the development, blastocyst cell number and amino acid metabolism of preimplantation bovine embryos in vitro. Embryos were produced by in vitro maturation and fertilization of immature oocytes from abattoir-derived ovaries. Zygotes were cultured in synthetic oviduct fluid with either 4 mg/ml BSA (SOFaaBSA) or 1 mg/ml PVA (SOFaaPVA) in microdrops with a mineral oil overlay at 39 degrees C under a 5% O2/5% CO2/90% N2 atmosphere. Blastocyst rate and cell numbers were determined after 123 h of culture. In parallel, single expanding blastocysts grown in either medium were incubated in microdrops for 12 h. Amino acid profile of spent drops was determined by high performance liquid chromatography. Replacing BSA with PVA depressed blastocyst rate and cell numbers, and led to quantitative and qualitative differences in amino acid appearance, disappearance and turnover. These differences could partly be due to an increase in free intracellular amino acid concentration in SOFaaBSA embryos derived from hydrolysis of endocytosed BSA, and argue against the inclusion of PVA in bovine embryo culture media.  相似文献   

12.
A simple and reliable capillary electrophoresis (CE) method with UV-vis detection is presented for the enantioselective separation and determination of vigabatrin enantiomers. Dehydroabietylisothiocyante (DHAIC), a novel chiral derivatizing reagent, was used for precolumn derivatization of vigabatrin enantiomers. Optimal separation was obtained with a running buffer consisting of 50 mM Na2HPO4 (pH 9.0), 17 mM sodium dodecyl sulfate (SDS) and 25% acetonitrile. The enantiomeric separation of vigabatrin derivatives was achieved within 25 min, and the resolution was found to be 2.1. Detection was followed by direct UV absorptiometric measurements at 202 nm. A calibration curve ranging from 0.3 to 6.0 microg/ml was shown to be linear, and the limit of detection was 0.15 microg/ml. The developed method has been applied to the determination of vigabatrin enantiomers spiked in human plasma, no interferences were found from endogenous amino acids.  相似文献   

13.
N-Phenylacetyl-(R)-phenylglycyl-(S)-cysteine (NPPC) was used for the determination of enantiomers of primary amines by rpHPLC with a precolumn modification with o-phthalaldehyde. NPPC was compared with the classic SH reagent N-acetyl-(S)-cysteine (NAC) in the analysis of stereomers of nonfunctionalized amines and amino alcohols. After the NAC modification, the resulting diastereomeric isoindoles were difficult to separate by HPLC, and satisfactory resolution was achieved only for some aliphatic amino alcohols. The use of NPPC improved the chromatographic analysis of stereomeric amino alcohols and, in addition, allowed the enantiomeric analysis of the nonfunctionalized amines. Similarity between the side radicals of the amino component and the thiol reagent favored the diastereomer separation. This method was used for determination of the absolute concentration of individual enantiomers of amines in the course of stereoselective enzymatic reactions. The optically active NPPC was prepared with a high yield by a chemoenzymatic synthesis based on a regioselective acylation of the (S)-cysteine amino group in aqueous medium by the action of penicillin acylase. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 5; see also http: // www.maik.ru.  相似文献   

14.
Several bifunctional alkylating agents of the aziridinylbenzoquinone class have been evaluated as potential antitumor agents. 3,6-Bis[(2-hydroxyethyl)amino]-2,5- diaziridinyl-1,4-benzoquinone (BZQ), 2,5-diaziridinyl-1,4-benzoquinone (DZQ), 3,6-bis(carboxyamino)-2,5-diaziridinyl- 1,4-benzoquinone (AZQ), and six analogues of AZQ have been studied for their ability to induce DNA interstrand cross-linking, as measured by an agarose gel technique, and to determine whether they react with DNA in a sequence-selective manner, as determined by a modified DNA sequencing technique. At an equimolar concentration (10 microM), only DZQ and BZQ showed any detectable cross-linking at pH 7 without reduction. Cross-linking was enhanced in both cases at low pH (4). Reduction by ascorbic acid at both pH's increased the cross-linking, which was particularly striking in the case of DZQ. In contrast, AZQ and its analogues only produced a significant level of cross-linking under both low-pH and reducing conditions, the extent of cross-linking decreasing as the size of the alkyl end group increased. The compounds reacted with all guanine-N7 positions in DNA with a sequence selectivity similar to other chemotherapeutic alkylating agents, such as the nitrogen mustards, although some small differences were observed with BZQ. Nonreduced DZQ showed a qualitatively similar pattern of reactivity to the other compounds, but on reduction (at pH 4 or 7) was found to react almost exclusively with 5'-GC-3' sequences, and in particular, at 5'-TGC-3' sites. A model to explain this unique reaction is proposed.  相似文献   

15.
Compounds 2a and 3a-e are racemic 2-[(acylamino)ethyl]-1,4-benzodiazepines, tifluadom analogs, with high affinity and selectivity towards the kappa-opioid receptor. We describe the enantiomeric separation of all compounds through liquid chromatography with chiral stationary phases, as well as the resolution of the enantiomers of the most interesting compounds, 2a and 3a, by the semipreparative column Chiralpak AD. The configuration of the resolved enantiomers was investigated: the comparative study of CD and (1)H NMR spectra shows that compounds (-)-2a and (-)-3a have the same absolute configuration of (+)-(S)-tifluadom. A study on the stereoselective interaction with opiate receptors is reported.  相似文献   

16.
A common screen for plant antimicrobial compounds consists of separating plant extracts by paper or thin-layer chromatography (PC or TLC), exposing the chromatograms to microbial suspensions (e.g. fungi or bacteria in broth or agar), allowing time for the microbes to grow in a humid environment, and visualizing zones with no microbial growth. The effectiveness of this screening method, known as bioautography, depends on both the quality of the chromatographic separation and the care taken with microbial culture conditions. This paper describes standard protocols for TLC and contact bioautography with a novel application to amino acid-fermenting bacteria. The extract is separated on flexible (aluminum-backed) silica TLC plates, and bands are visualized under ultraviolet (UV) light. Zones are cut out and incubated face down onto agar inoculated with the test microorganism. Inhibitory bands are visualized by staining the agar plates with tetrazolium red. The method is applied to the separation of red clover (Trifolium pratense cv. Kenland) phenolic compounds and their screening for activity against Clostridium sticklandii, a hyper ammonia-producing bacterium (HAB) that is native to the bovine rumen. The TLC methods apply to many types of plant extracts and other bacterial species (aerobic or anaerobic), as well as fungi, can be used as test organisms if culture conditions are modified to fit the growth requirements of the species.  相似文献   

17.
Production of sago starch-based foam involved mixing of sago starch with polyvinyl alcohol (PVA) or polyvinyl pyrrolidone (PVP) followed by preparation of electron beam irradiated sago starch/PVA and sago starch/PVP sheets and expanding them in a microwave. The results revealed that good foams with high linear expansion and closed cell structure can be produced from 25:15 of sago starch:PVA and 30:10 of sago starch:PVA blends prepared at 80 °C and electron beam irradiated at 15 kGy or 10 kGy for the cross-linking process. An increment of sago starch in the blends enhanced the linear expansion of the foams produced. Change in the blend morphology was observed when it was exposed to higher irradiation doses as electron beam irradiation induced the cross-linking in PVA and PVP, and leaching of amylose and amylopectin from the starch granules. Sago starch/PVA blend is more suitable for foam production because it produced flexible and glossy foam as compared to sago starch/PVP blend which produced very rigid foam.  相似文献   

18.
Producing monoclonal antibodies includes their efficient and simple purification. Growing hybridoma cells in media containing Prolifix, an alternative plant-based substitute for serum, provides supernatants containing large amounts of antibodies and defined low molecular weight additives. Antibodies can easily be separated from these compounds by fast ultrafiltration. However, DNA originating from lysed cells is present in substantial amounts and must be removed for most antibody applications. The present communication provides a fast, cheap, and efficient separation method by precipitating the DNA from a phosphate buffered solution with manganese chloride. Resulting antibodies have a high purity and an unchanged bioactivity. The method is especially valuable for antibodies which lose bioactivity by interactions with chromatographic matrices (as, for example, Sepharose) and can be used for various antibody isotypes.  相似文献   

19.
The EcoRII homodimer engages two of its recognition sequences (5'-CCWGG) simultaneously and is therefore a type IIE restriction endonuclease. To identify the amino acids of EcoRII that interact specifically with the recognition sequence, we photocross-linked EcoRII with oligonucleotide substrates that contained only one recognition sequence for EcoRII. In this recognition sequence, we substituted either 5-iododeoxycytidine for each C or 5-iododeoxyuridine for A, G, or T. These iodo-pyrimidine bases were excited using a UV laser to result in covalent cross-linking products. The yield of EcoRII photocross-linked to the 5'-C of the 5'-CCAGG strand of the recognition sequence was 45%. However, we could not photocross-link EcoRII to the 5'-C of the 5'-CCTGG strand. Thus, the contact of EcoRII to the bases of the recognition sequence appears to be asymmetric, unlike that expected for most type II restriction endonucleases. Tryptic digestion of free and of cross-linked EcoRII, followed by high performance liquid chromatography (HPLC) separation of the individual peptides and Edman degradation, identified amino acids 25-49 of EcoRII as the cross-linking peptide. Mutational analysis of the electron-rich amino acids His(36) and Tyr(41) of this peptide indicates that Tyr(41) is the amino acid involved in the cross-link and that it therefore contributes to specific DNA recognition by EcoRII.  相似文献   

20.
N-Phenylacetyl-(R)-phenylglycyl-(S)-cysteine (NPPC) was used for the determination of enantiomers of primary amines by rpHPLC with a precolumn modification with o-phthalaldehyde. NPPC was compared with the classic SH reagent N-acetyl-(S)-cysteine (NAC) in the analysis of stereomers of nonfunctionalized amines and amino alcohols. After the NAC-modification, the resulting diastereomeric isoindoles were difficult to separate by HPLC, and satisfactory resolution was achieved only for some aliphatic amino alcohols. The use of NPPC improved the chromatographic analysis of stereomeric amino alcohols and, in addition, allowed the enantiomeric analysis of the nonfunctionalized amines. Similarity between the side radicals of the amino component and the thiol reagent favored the diastereomer separation. This method was used for determination of the absolute concentration of individual enantiomers of amines in the course of stereoselective enzymatic reactions. The optically active NPPC was prepared with a high yield by a chemoenzymatic synthesis based on a regioselective acylation of the (S)-cysteine amino group in aqueous medium by the action of penicillin acylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号