首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Oxidative consumption of nitric oxide by heterotrophic bacteria in soil   总被引:1,自引:0,他引:1  
Abstract: Uptake rate constants for nitric oxide were measured in a neutral calcic cambisol (KBE) and an acidic luvisol (PBE). The NO uptake was higher under oxic than under anoxic incubation conditions by a factor of about three. Gassing the soils with air containing 10 ppmv NO resulted in the accumulation of nitrate which accounted for 57–94% of the NO consumed. Aerobic heterotrophic bacteria were isolated on glucose-yeast extract medium from soil dilutions corresponding to a most probable number of 108–109 bacteria per gram dry weight soil. One of the isolates (strain PS88, a Pseudomonas sp.) exhibited NO consumption activity that was much higher under oxic than anoxic incubation conditions. When sterile KBE amended with strain PS88 was gassed with air containing 10 ppmv NO, 88% of the consumed NO was recovered as nitrate and nitrite. A screening of various bacteria obtained from culture collections showed a widespread ability for consumption of low NO concentrations. Our results indicate that NO consumption in soil is not only possible by reductive denitrification, but also by oxidation due to aerobic heterotrophic bacteria such as strain PS88.  相似文献   

2.
Smooth muscle myometrial cells isolated by an enzymatic method from estrogenized rats were used after 7-10 days of culture. They were incubated for 24 h with two distinct competitive nitric oxide (NO) inhibitors: NG-monomethyl-L-arginine (L-NMMA: 300 microM) and L-nitro-arginine methylester (L-NAME: 600 microM, 5 mM and 10 mM). Afterwards, the supernatants were separated in order to measure nitrite production and prostaglandin PGE synthesis. In the present report, we demonstrate that myometrial cells from estrogenized rats are able to produce NO, since all the inhibitors significantly decrease the production of nitrites in the culture media. Furthermore, we report that both inhibitors inhibited PGE synthesis by myometrial cells. We also used a donor of NO in the incubation medium for 24 h, sodium nitroprusside (NP), obtaining an strong (P< 0.001) increase in both nitrite and PGE production. We conclude that myometrial cells can produce NO and that one possible role of the NO synthetized by this cells may be the modulation of PGE production.  相似文献   

3.
Red wine-dependent reduction of nitrite to nitric oxide in the stomach   总被引:3,自引:1,他引:2  
Nitrite may be a source for nitric oxide (*NO), particularly in highly acidic environments, such as the stomach. Diet products contribute also with reductants that dramatically increase the production of *NO from nitrite. Red wine has been attributed health promoting properties largely on basis of the reductive antioxidant properties of its polyphenolic fraction. We show in vitro that wine, wine anthocyanin fraction and wine catechol (caffeic acid) dose- and pH-dependently promote the formation of *NO when mixed with nitrite, as measured electrochemically. The production of *NO promoted by wine from nitrite was substantiated in vivo in healthy volunteers by measuring *NO in the air expelled from the stomach, following consumption of wine, as measured by chemiluminescence. Mechanistically, the reaction involves the univalent reduction of nitrite, as suggested by the formation of *NO and by the appearance of EPR spectra assigned to wine phenolic radicals. Ascorbic and caffeic acids cooperate in the reduction of nitrite to *NO. Moreover, reduction of nitrite is critically dependent on the phenolic structure and nitro-derivatives of phenols are also formed, as suggested by caffeic acid UV spectral modifications. The reduction of nitrite may reveal previously unrecognized physiologic effects of red wine in connection with *NO bioactivity.  相似文献   

4.
A method for the spectrophotometric determination of nitric oxide, nitrite, and nitrate in tissue culture media is presented. The method is based on the nitric oxide-mediated nitrosative modification of sulfanilic acid that reacts with N-(1-naphthyl)ethylenediamine dihydrochloride forming an orange-colored product absorbing at 496 nm. Nitric oxide levels were determined in culture media from this absorbance measurement using chemiluminescence standardization. Extinction coefficients of 5400 and 6600 M(-1) cm(-1) were determined for the nitric oxide product in assay solutions containing 0.1 or 100 mM KPO4 buffer (pH 7.4), respectively, with a limit of detection of 1 microM. Acidification of these reactions (pH 2.4) generated a pink-colored product absorbing at 540 nm allowing for quantitation of total nitric oxide/nitrite levels using extinction coefficients of 38,000 and 36,900 M(-1) cm(-1), for the assay solutions described. The limit of detection of this assay was approximately 300 nM. Using the 100 mM KPO4 buffer system, nitrate levels were determined following reduction to nitrite using a copper-coated cadmium reagent with an extinction coefficient of 29,500 M(-1) cm(-1) and a detection limit of 0.5 microM. The utility of these assays was demonstrated in the standardization of nitric oxide-saturated cell culture media, and the release of nitric oxide by the NONOate compound DEA/NO.  相似文献   

5.
The biological roles of nitric oxide (NO)-hemoglobin (Hb) derivatives are obscure. It is proposed that NO can function as an allosteric regulator of hemoglobin oxygen-binding properties. We aimed to estimate the effects of NO donors and NO-synthase substrate (L-arginine) on hemoglobin-oxygen affinity (HOA) in experiments in vitro with the various ratios between NO formed and Hb and various oxygen pressures. HOA index (p50), blood pH, plasma and red blood cell (RBC) concentrations of nitrite/nitrate and methemoglobin amounts were measured after the experiments. In our experiments, blood incubation with NO donors (glyceryltrinitrate, molsidomine, sodium nitroprusside, S-nitrosocysteine) or NO-synthase substrate (L-arginine) did not change HOA even at NO:Hb ratio of 1:1. At the same time our results showed that oxygenated blood incubation with S-nitrosocysteine induced an oxyhemoglobin dissociation curve shift leftwards. This indicates a leading role of met-Hb in a modification of Hb oxygen-binding properties. However other NO-modified forms of hemoglobin (S-nitroso- and nitrosylhemoglobin) also may be involved in the regulation of HOA. The results obtained indicate that nitric oxide can be the allosteric effector of hemoglobin, increasing or decreasing its oxygen affinity - possibly, through the generation of different NO-Hb derivatives.  相似文献   

6.
Hydroxyurea is an approved treatment for sickle cell disease. Oxidation of hydroxyurea results in the formation of nitric oxide (NO), which also has drawn considerable interest as a sickle cell disease therapy. Although patients on hydroxyurea demonstrate elevated levels of nitric oxide-derived metabolites, little information regarding the site or mechanism of the in vivo conversion of hydroxyurea to nitric oxide exists. Chemiluminescence detection experiments show the ability of crude rat liver homogenate to convert hydroxyurea to nitrite/nitrate, evidence for NO production. Nitrite/nitrate form at therapeutic concentrations of hydroxyurea in a clinically relevant time frame. Electron paramagnetic resonance (EPR) studies show the formation of iron nitrosyl complexes during this incubation and experiments with labeled hydroxyurea show the NO derives from the drug. Gas chromatography-mass spectrometry measurements indicate the hydrolysis of hydroxyurea to hydroxylamine in this system. Incubation of hydroxylamine with crude rat liver homogenate also generates nitrite/nitrate and iron nitrosyl complexes. A line of evidence including inhibitor studies, EPR spectroscopy, and nitrite/nitrate detection identifies catalase as a possible oxidant for the conversion of hydroxyurea to NO. These results reveal the ability of liver tissue to convert hydroxyurea to nitric oxide and provide insight into the metabolism of this drug.  相似文献   

7.
8.
Endothelial production of nitric oxide (NO) is critical for vascular homeostasis. Nitrite and nitrate are formed endogenously by the stepwise oxidation of NO and have, for years, been regarded as inactive degradation products. As a result, both anions are routinely used as surrogate markers of NO production, with nitrite as a more sensitive marker. However, both nitrite and nitrate are derived from dietary sources. We sought to determine how exogenous nitrite affects steady-state concentrations of NO metabolites thought to originate from nitric oxide synthase (NOS)-derived NO as well as blood pressure and myocardial ischemia-reperfusion (I/R) injury. Mice deficient in endothelial nitric oxide synthase (eNOS-/-) demonstrated decreased blood and tissue nitrite, nitrate, and nitroso proteins, which were further reduced by low-nitrite (NOx) diet for 1 week. Nitrite supplementation (50 mg/L) in the drinking water for 1 week restored NO homeostasis in eNOS-/- mice and protected against I/R injury. Nitrite failed to alter heart rate or mean arterial blood pressure at the protective dose. These data demonstrate the significant influence of dietary nitrite intake on the maintenance of steady-state NO levels. Dietary nitrite and nitrate may serve as essential nutrients for optimal cardiovascular health and may provide a novel prevention/treatment modality for disease associated with NO insufficiency.  相似文献   

9.
Tischner R  Planchet E  Kaiser WM 《FEBS letters》2004,576(1-2):151-155
Wild type (WT), and nitrate reductase (NR)- and nitrite-reductase (NiR)-deficient cells of Chlorella sorokiniana were used to characterize nitric oxide (NO) emission. The NO emission from nitrate-grown WT cells was very low in air, increased slightly after addition of nitrite (200 microM), but strongly under anoxia. Importantly, even completely NR-free mutants, as well as cells grown on tungstate, emitted NO when fed with nitrite under anoxia. Therefore, this NO production from nitrite was independent of NR and other molybdenum cofactor enzymes. Cyanide and inhibitors of mitochondrial complex III, myxothiazol or antimycin A, but not salicylhydroxamic acid (inhibitor of alternative oxidase) inhibited NO production by NR-free cells. In contrast, NiR-deficient cells growing on nitrate accumulated nitrite and emitted NO at very high equal rates in air and anoxia. This NO emission was 50% inhibited by salicylhydroxamic acid, indicating that in these cells the alternative oxidase pathway had been induced and reduced nitrite to NO.  相似文献   

10.
By using the ESR spin trapping technique with the N-methyl-D-glucamine dithiocarbamate (MGD)2-Fe(II) complex, the generation of nitric oxide (NO), a gaseous free radical, was observed in NO spin trapping solution bubbled with the filtered main-stream of cigarette smoke. The ESR signal with a three-line spectrum characteristic of an NO radical, which was not observed immediately after bubbling of smoke, started rapidly increasing with time up to around 25 min after the last addition of ferrous ions Fe(II), and then slowly approached a peak value dependent on the burned cigarette mass and on the smoking speed. The production of NO was, however, much affected by air oxidation and enhanced by the addition of ascorbic acid. A certain concentration of sodium nitrite (NaNO2) solution, in which nitrite NO2- is assumed as the main origin of the NO, mimicked closely the time course of NO generation resulting from the smoke of one cigarette. The cigarette smoke that was passed through alkaline pyrogallol solution as a deoxidizer; however, it exhibited an unchanged intensity of NO signal throughout the measurement. These results strongly suggest that NO would be gradually reproduced from NO2- in the reductive aqueous solution containing excess Fe(II) through NO2, which is initially formed and is concomitantly oxidized from NO in cigarette smoke.  相似文献   

11.
Cigarette smoking reduces the level of nitric oxide (NO) in exhaled air by an unknown mechanism. The view that part of the effect of cigarette smoking on NO production should occur in the oropharyngeal tract is supported by several studies. We have therefore compared smokers and non-smokers regarding non-enzymatic formation of NO from nitrite in the oral cavity since this is a primary candidate target for cigarette smoke. We have also looked at NO synthase-dependent NO formation in the mucosa of the oropharyngeal tract as an alternative target for the inhibitory effect induced by cigarette smoke. Smokers exhaled 67% lower levels of NO than controls (p<0.01, n=15 each group). We could not detect any significant difference in salivary nitrite, nitrate or ascorbate between smokers and non-smokers. Mouthwash with the antibacterial agent chlorhexidine reduced salivary nitrite (-65%) and exhaled NO levels (-10%) similarly in the two groups. Immunohistochemical techniques revealed dense expression of inducible (but not endothelial or neuronal) NO synthase in the squamous epithelium of non-inflamed tonsillar and gingival tissue biopsies. In the same biopsies, significant Ca2+ -independent citrulline-forming activity was detected. We found no difference between smoking and non-smoking subjects regarding NO-synthase expression and in vitro activity. In another group of non-smoking subjects (n=10), spraying the oropharyngeal tract with the NO-synthase inhibitor NG-monomethyl-L-arginine (250 mg) significantly reduced exhaled NO levels for at least 30 min (-18%, p<0.01). Our data suggest that cigarette smoking does not affect non-enzymatic NO formation from nitrite in saliva. However, NO is also formed by inducible NO synthase in the squamous epithelium of the normal oropharyngeal tract. We suggest that cigarette smoking may down-regulate enzymatic NO formation in the oropharyngeal compartment as well as in the bronchial compartment.  相似文献   

12.
13.
NO reductase synthesis was investigated immunochemically and by activity assays in cells of Pseudomonas stutzeri ZoBell grown in continuous culture at discrete aeration levels, or in O2-limited batch cultures supplemented with N oxides as respiratory substrate. Under aerobic conditions, NO reductase was not expressed in P. stutzeri. Oxygen limitation in combination with the presence of nitrate or nitrite derepressed NO reductase synthesis. On transition from aerobic to anaerobic conditions in continuous culture, NO reductase was synthesized below 3% air saturation and reached maximum expression under anaerobic conditions. By use of mutant strains defective in nitrate respiration or nitrite respiration, the inducing effect of individual N oxides on NO reductase synthesis could be discriminated. Nitrite caused definite, concentration-dependent induction, while nitrate promoted moderate enzyme synthesis or amplified effects of nitrite. Exogenous nitric oxide (NO) in concentrations 25 M induced trace amounts of NO reductase; in higher concentrations it arrested cell growth. Nitrite reductase or NO reductase were not detected immunochemically under these conditions. NO generated as an intermediate appeared not to induce NO reductase significantly. Antiserum raised against the P. stutzeri NO reductase showed crossreaction with cell extracts from P. stutzeri JM300, but not with several other denitrifying pseudomonads or Paracoccus denitrificans.  相似文献   

14.
To evaluate the effect of exogenous nitric oxide (NO) and endogenous NO on the production of prostacyclin (PGI(2)) by cultured human pulmonary artery smooth muscle cells (HPASMC) treated with lipopolysaccharide (LPS), interleukin-1(beta)(IL-1(beta)), tumor necrosis factor alpha (TNF(alpha)) or interferon gamma (IFN(gamma)), HPASMC were treated with LPS and cytokines together with or without sodium nitroprusside (SNP), NO donor, N(G)-monomethyl-L-arginine (L-NMMA), NO synthetase inhibitor, and methylene blue (MeB), an inhibitor of the soluble guanylate cyclase. After incubation for 24 h, the postculture media were collected for the assay of nitrite by chemiluminescence method and the assay of PGI(2)by radioimmunoassay. The incubation of HPASMC with various concentrations of LPS, IL-1(beta)or TNF(alpha)for 24 h caused a significant increase in nitrite release and PGI(2)production. However, IFN(gamma)slightly increased the release of nitrite and had little effect on PGI(2)production. Although the incubation of these cells for 24 h with SNP did not cause a significant increase in PGI(2)production, the incubation of HPASMC with SNP and 10 microg/ml LPS, or with SNP and 100 U/ml IL-1(beta)further increase PGI(2)production and this enhancement was closely related to the concentration of SNP. However, stimulatory effect of SNP on PGI(2)production was not found in TNF(alpha)- and IFN(gamma)- treated HPASMC. Addition of L-NMMA to a medium containing LPS or IL-1(beta)reduced nitrite release and attenuated the stimulatory effect of those agents on PGI(2)production. MeB significantly suppressed the production of PGI(2)by HPASMC treated with or without LPS or IL-1(beta). The addition of SNP partly reversed the inhibitory effect of MeB on PGI(2)production by HPASMC. These experimental results suggest that NO might stimulate PGI(2)production by HPASMC. Exogenous NO together with endogenous NO induced by LPS or cytokines from smooth muscle cells might synergetically enhance PGI(2)production by these cells, possibly in clinical disorders such as sepsis and acute respiratory distress syndrome.  相似文献   

15.
Previously, we demonstrated the presence of a nitric oxide (NO) prostaglandin (PG) pathway in myometrial cells obtained from uterine rat tissue. This pathway was modulated by estrogen and one possible function could be to modulate uterine relaxation. In the present study, we investigated the role of progesterone in the regulation of NO synthesis and the uterotonic PGE production by myometrial cells from uterine rat tissue. We worked with two groups of rats: (i) ovariectomizcd (OV) rats, without influence of sex hormones and (ii) OV rats injected with progesterone (4 mg) s.c. Myometrial uterine cells were obtained by a selective enzymatic digestion. In the incubation medium of these cells, nitrite concentration (as a measure of NO production) and PGE production were evaluated. To ensure a specific response, a competitive NOs inhibitor, N(G)-monomethyl-L-arginine; L-NMMA (300 microM) was used. We found that at 48 h of the incubation period, cells obtained from progesterone-primed uterine tissue presented an increase in the nitrite concentration concomitant with a decrease in the PGE production. When L-NMMA was added to the cells, nitrite production and PGE synthesis returned to control values. The fact that this effect had not been observed in the group of cells obtained from OV rats suggests that progesterone was responsible for it. These data provide strong evidence that in spite of the fact that estrogen and progesterone modulate the NO-PG pathway in the uterine rat tissue, the two hormones have opposite effects.  相似文献   

16.
Bacterial denitrification reverses nitrogen fixation in the global N-cycle by transforming nitrate or nitrite to dinitrogen. Both nitrite and nitric oxide (NO) are considered as the chemical species within the denitrification pathway, that precede nitrous oxide (N2O), the first recognized intermediate with N,N-bonds antecedent to N2. Molecular cloning of the structural genes for NO reductase from Pseudomonas stutzeri has allowed us to generate the first mutants defective in NO utilization (Nor- phenotype) by marker exchange of the norCB genes with a gene cassette for gentamicin resistance. Nitric oxide reductase was found to be an indispensable component for denitrification; its loss constituted a conditionally lethal mutation. NO as the sole product accumulated from nitrite by mutant cells induced for nitrite respiration (denitrification). The Nor- mutant lost the capability to reduce NO and did not grow anymore anaerobically on nitrate. A Nir-Nor- double mutation, that inactivated also the respiratory nitrite reductase cytochrome cd1 rendered the bacterium again viable under anaerobiosis. Our observations provide evidence for a denitrification pathway in vivo of NO2(-)----NO----N2O, and N,N-bond formation catalyzed by NO reductase and not by cytochrome cd1.  相似文献   

17.
18.
In Escherichia coli, nitrosative mutagenesis may occur during nitrate or nitrite respiration. The endogenous nitrosating agent N2O3 (dinitrogen trioxide, nitrous anhydride) may be formed either by the condensation of nitrous acid or by the autooxidation of nitric oxide, both of which are metabolic by-products. The purpose of this study was to determine which of these two agents is more responsible for endogenous nitrosative mutagenesis. An nfi (endonuclease V) mutant was grown anaerobically with nitrate or nitrite, conditions under which it has a high frequency of A:T-to-G:C transition mutations because of a defect in the repair of hypoxanthine (nitrosatively deaminated adenine) in DNA. These mutations could be greatly reduced by two means: (i) introduction of an nirB mutation, which affects the inducible cytoplasmic nitrite reductase, the major source of nitric oxide during nitrate or nitrite metabolism, or (ii) flushing the anaerobic culture with argon (which should purge it of nitric oxide) before it was exposed to air. The results suggest that nitrosative mutagenesis occurs during a shift from nitrate/nitrite-dependent respiration under hypoxic conditions to aerobic respiration, when accumulated nitric oxide reacts with oxygen to form endogenous nitrosating agents such as N2O3. In contrast, mutagenesis of nongrowing cells by nitrous acid was unaffected by an nirB mutation, suggesting that this mutagenesis is mediated by N2O3 that is formed directly by the condensation of nitrous acid.  相似文献   

19.
In alkaline media the thiamine cyclic form is converted into a thiol form (pK(a) 9.2) with an opened thiazole ring. The thiamine thiol form releases nitric oxide from S-nitrosoglutathione (GSNO). Thiamine disulfide, mixed thiamine disulfide with glutathione, and nitric oxide are produced in the reaction. Free glutathione was recorded in small amounts. The concentration of formed nitric oxide agreed well with the concentration of degraded GSNO. The concentration of released nitric oxide was determined under anaerobic conditions spectrophotometrically by production of nitrosohemoglobin. In air, the release of nitric oxide was recorded by the production of nitrite or the oxidation of oxyhemoglobin to methemoglobin. The concentration of the thiol form in the body under physiological pH values (7.2-7.4) did not exceed 1.5-2.0%. We believe that due to the exchange reactions between the thiamine thiol form and S-nitrosocysteine protein residues, nitric oxide can be released and mixed thiamine-protein disulfides are formed. The mixed thiamine disulfides (including thiamine ester disulfides) as well as the thiamine disulfide form are quite easily reduced by low molecular weight thiols to form the thiamine cyclic form with a closed thiazole ring. A possible role of the thiamine thiol form in releasing deposited nitric oxide from low-molecular-weight S-nitrosothiols and protein S-nitrosothiols and in regulation of blood flow in the vascular bed is discussed.  相似文献   

20.
Nitric oxide (NO) is a free radical involved in the regulation of several functions of the male genitourinary system. It is produced by neurons and the endothelium and epithelia of reproductive system; it mediates penile erection and regulates sperm motility, viability, and metabolism. Here we show that human spermatozoa exhibit a detectable NO synthase (NOS) activity, measured both as ability of the intact sperm and cell lysate to convert L-[3H]arginine into L-[3H]citrulline and as 24 h accumulation of extracellular nitrite in intact sperm suspensions. NOS activity (identified as an endothelial isoform) was inhibited by L-canavanine and NG-monomethyl-L-arginine, and nitrite accumulation was inhibited by the NO scavenger hemoglobin; both enzyme activity and nitrite production were increased by a 24 h incubation of spermatozoa with protein-enriched extracts of human follicular fluid (PFF); a significant increase of citrulline synthesis was observed only after a 4 h incubation with 40% PFF, a time period during which acrosomal reactivity was significantly increased. PFF-induced acrosomal reaction was inhibited by L-canavanine and hemoglobin, and the NO donors sodium nitroprusside (SNP), S-nitroso-N-acetyl-penicillamine (SNAP), and DETA NONOate were able to increase the percentage of reacted spermatozoa. Our results suggest that NO synthesized by human sperm may play a role in follicular fluid–induced acrosomal reaction. J Cell Physiol 178:85–92, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号