首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of structurally novel mono-carbonyl curcumin analogues have been synthesized and biologically evaluated to test their inhibitory potencies and the structure–activity relationship (SAR) on human and rat 11β-hydroxysteroid dehydrogenase isoform (11β-HSD1) activities. 11β-HSD1 selective inhibitors have been discovered and compound A10 is discovered as a very potent with an IC50 value of 97 nM without inhibiting 11β-HSD2.  相似文献   

2.
A new series of cyclic sulfonamide derivatives was synthesized and evaluated for their ability to inhibit 11β-HSD1. Cyclic sulfonamides with phenylacetyl substituents at the 2-position showed nanomolar inhibitory activities. Among them, compound 4e exhibited a good in vitro inhibitory activity and selectivity toward human 11β-HSD2.  相似文献   

3.
4.
Starting from screening hit, (4S,7R)-1,7,8,8-tetramethyl-2-phenyl-1,2,4,5,6,7-hexahydro-4,7-methano-indazol-3-one (7), we optimized the potency and pharmacokinetic properties. This led to the identification of compounds with good in vivo activity in a mouse pharmacodynamic model of inhibition of 11βHSD1.  相似文献   

5.
The modulation of 11β-HSD1 activity with selective inhibitors has beneficial effects on various metabolic disorders including insulin resistance, dyslipidemia and obesity. Here we report the discovery of a series of novel adamantyl carboxamide and acetamide derivatives as selective inhibitors of human 11β-HSD1 in HEK-293 cells transfected with the HSD11B1 gene. Optimization based on an initially identified 11β-HSD1 inhibitor (3) led to the discovery of potent inhibitors with IC50 values in the 100 nM range. These compounds are also highly selective 11β-HSD1 inhibitors with no activity against 11β-HSD2 and 17β-HSD1. Compound 15 (IC50 = 114 nM) with weak inhibitory activity against the key human cytochrome P450 enzymes and moderate stability in incubation with human liver microsomes is worthy of further development. Importantly, compound 41 (IC50 = 280 nM) provides a new lead that incorporates an adamantyl group surrogate and should enable further series diversification.  相似文献   

6.
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the formation of the potent proliferation-stimulating hormone estradiol, and it is thus involved in the development of hormone-dependent breast cancer. Due to its high substrate specificity and the known relationships between its overexpression and disease incidence, 17β-HSD1 is considered an attractive target for drug development. Here, we have used structure-based virtual high-throughput screening to successfully identify potent nonsteroidal 17β-HSD1 inhibitors. Computational screening of a drug-like database containing 13 million compounds identified hits with a 2-benzylidenebenzofuran-3(2H)-one scaffold that we show to be highly potent 17β-HSD1 inhibitors. The most potent in the series, compound 1, showed an IC(50) of 45nM in our 17β-HSD1 inhibition assay, and also showed good selectivity for 17β-HSD1 over 17β-HSD2.  相似文献   

7.
The 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), a cortisol regenerating enzyme that amplifies tissue glucocorticoid levels, plays an important role in diabetes, obesity, and glaucoma and is recognized as a potential therapeutic target for various disease conditions. Moreover, a recent study demonstrated that selective 11β-HSD1 inhibitor can attenuate ischemic brain injury. This prompted us to optimize cyclic sulfamide derivative for aiming to treat ischemic brain injury. Among the synthesized compounds, 6e has an excellent in vitro activivity with an IC50 value of 1 nM toward human and mouse 11β-HSD1 and showed good 11β-HSD1 inhibition in ex vivo study using brain tissue isolated from mice. Furthermore, in the transient middle cerebral artery occlusion model in mice, 6e treatment significantly attenuated infarct volume and neurological deficit following cerebral ischemia/reperfusion injury. Additionally, binding modes of 6e for human and mouse 11β-HSD1 were suggested.  相似文献   

8.
Reported herein is a fluorescence assay for the rapid screening of metallo-β-lactamase (MBL) inhibitors. This assay employs a fluorogenic carbapenem CPC-1 as substrate and is compatible with all MBLs, including B1, B2 and B3 subclass MBLs. The efficiency of this assay was demonstrated by the rapid inhibition screening of a number of molecules against B2 MBL CphA and 2,3-dimercaprol was identified as a potent CphA inhibitor.  相似文献   

9.
The human enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) catalyzes the reversible oxidoreduction of 11β-OH/11-oxo groups of glucocorticoid hormones. Besides this important endocrinological property, the type 1 isozyme (11β-HSD1) mediates reductive phase I reactions of several carbonyl group bearing xenobiotics, including drugs, insecticides and carcinogens. The aim of this study was to explore novel substrate specificities of human 11β-HSD1, using heterologously expressed protein in the yeast system Pichia pastoris. In addition to established phase I xenobiotic substrates, it is now demonstrated that transformed yeast strains catalyze the reduction of ketoprofen to its hydroxy metabolite, and the oxidation of the prodrug DFU-lactol to the pharmacologically active lactone compound. Purified recombinant 11β-HSD1 mediated oxidative reactions, however, the labile reductive activity component could not be maintained. In conclusion, evidence is provided that human 11β-HSD1 in vitro is involved in phase I reactions of anti-inflammatory non-steroidal drugs like ketoprofen and DFU-lactol.  相似文献   

10.
11.
In the last decade the inhibition of the enzyme 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) emerged as a promising new strategy to treat diabetes and several metabolic syndrome phenotypes. Using a molecular modeling approach and classical bioisosteric studies, we discovered a new class of 11β-HSD1 inhibitors bearing an arylsulfonylpiperazine scaffold. Optimization of the initial lead resulted in compound 11 that selectively inhibits 11β-HSD1 (IC50 = 0.7 μM).  相似文献   

12.
There are two steroid 11β-hydroxylase isozymes encoded by the CYP11B1 and CYP11B2 genes on human chromosome 8q. The first is expressed at high levels in the normal adrenal gland, has 11β-hydroxylase activity and is regulated by ACTH. Mutations in the corresponding gene cause congenital adrenal hyperplasia due to 11β-hydroxylase deficiency; thus, this isozyme is required for cortisol biosynthesis. The second isozyme is expressed at low levels in the normal adrenal gland but at higher levels in aldosterone-secreting tumors, and has 11β-hydroxylase, 18-hydroxylase and 18-oxidase activities. The corresponding gene is regulated by angiotensin II, and mutations in this gene are found in persons who are unable to synthesize aldosterone due to corticosterone methyloxidase II deficiency. Thus, this isozyme is required for aldosterone biosynthesis.

Cortisol and aldosterone are both effective ligands of the “mineralocorticoid” receptor in vitro, but only aldosterone is a potent mineralocorticoid in vivo. This apparent specificity occurs because 11β-hydroxysteroid dehydrogenase in the kidney converts cortisol to cortisone, which is not a ligand for the receptor. This enzyme is a “short-chain” dehydrogenase which is encoded by a single gene on human chromosome 1. It is possible that mutations in this gene cause a form of childhood hypertension called apparent mineralocorticoid excess, in which the mineralocorticoid receptor is not protected from high concentrations of cortisol.  相似文献   


13.
A series of pyridyl amide/sulfonamide inhibitors of 11β-HSD-1 were modified to incorporate a novel 1,2,4-triazolopyridine scaffold. Optimization of substituents at the 3 and 8 position of the TZP core, with a special focus on enhancing metabolic stability, resulted in the identification of compound 38 as a potent and metabolically stable inhibitor of the enzyme.  相似文献   

14.
Corticosterone — product of 11-β-hydroxysteroid dehydrogenase type I (11βHSD1) stimulates adipocytes differentiation and activates lipogenic enzymes gene expression in white adipose tissue (WAT) of rats. The aim of the study was to examine the effect of chronic food restriction, often practised by obese individuals trying to lose body mass, on: a) 11βHSD1 gene expression, b) expression of genes associated with adipocyte differentiation (PPARg, SREBP-1, adiponectin), and c) expression of genes associated with lipogenesis in WAT of rats. Two-month old rats were divided into a control and a food restricted group obtaining 50% of food consumed by controls for 30 days. mRNA levels of studied genes in perirenal WAT were analysed by real-time PCR. 11βHSD1 and lipogenic enzymes activities were measured by radiometric conversion assay and by spectrophotometric assay respectively. Food restriction caused significant increase of 11βHSD1, PPARg, SREBP1, adiponectin and lipogenic enzymes mRNA levels in perirenal WAT. 11βHSD1 and some lipogenic enzymes activities were also increased by food restriction. The coordinated up-regulation of 11βHSD1, and genes associated with adipocyte differentiation and lipogenesis by food restriction suggests that such nutritional condition shifts WAT metabolism, that would permit this tissue to synthesize and accumulate triacylglycerols immediately after refeeding.  相似文献   

15.
Indole-pyrrolidines were identified as inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) by high-throughput screening. Optimisation of the initial hit through structure-based design led to 7-azaindole-derivatives, with the best analogues displaying single digit nanomolar IC(50) potency. The modeling hypotheses were confirmed by solving the X-ray co-crystal structure of one of the lead compounds. These compounds were selective against 11β-hydroxysteroid dehydrogenase type 2 (selectivity ratio >200) and exhibited good inhibition of 11β-HSD1 (IC(50)<1μM) in a cellular model (3T3L1 adipocytes).  相似文献   

16.
The synthesis and SAR of a series of arylsulfonylpiperazine inhibitors of 11β-HSD1 are described. Optimization rapidly led to potent, selective, and orally bioavailable inhibitors demonstrating efficacy in a cynomolgus monkey ex vivo enzyme inhibition model.  相似文献   

17.
The enzyme 11β-HSD1 plays a crucial role in the tissue-specific regulation of cortisol levels and it has been associated with various diseases. Inhibition of 11β-HSD1 is an attractive intervention strategy and the discovery of novel selective 11β-HSD1 inhibitors is of high relevance. In this study, we identified and evaluated a new series of selective peptide 11β-HSD1 inhibitors with potential for skin care applications. This novel scaffold was designed with the aid of molecular modeling and two previously reported inhibitors. SAR optimization yielded highly active peptides (IC50 below 400?nM) that were inactive at 1?µM concentration against structurally related enzymes (11β-HSD2, 17β-HSD1 and 17β-HSD2). The best performing peptides inhibited the conversion of cortisone into cortisol in primary human keratinocytes and the most active compound, 5d, was further shown to reverse cortisone-induced collagen damage in human ex-vivo tissue.  相似文献   

18.
Many adamantane derivatives have been demonstrated to function as 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors. 3-Amino-N-adamantyl-3-methylbutanamide derivatives were optimized by structure-based drug design. Compound 8j exhibited a good in vitro and ex vivo inhibitory activity against both human and mouse 11β-HSD1.  相似文献   

19.
11β-Hydroxyprogesterone is a well-known nonselective inhibitor of 11β-hydroxysteroid dehydrogenase (11βHSD) types 1 and 2. It also activates the mineralocorticoid receptor (MR). Modulation of corticosteroid action by inhibition of 11βHSDs or blocking MR is currently under consideration for treatment of electrolyte disturbances, metabolic diseases and chronic inflammatory disorders. We established conditions to synthesize sterically demanding 11β-aminoprogesterone, which following subsequent nucleophilic or reductive amination, allowed extension of the amino group to prepare amino acid derivatives. Biological testing revealed that some of the 11β-aminoprogesterone derivatives selectively inhibit 11βHSD2. Moreover, two compounds that did not significantly inhibit 11βHSDs had antagonist properties on MR. The 11β-aminoprogesterone derivatives form a basis for the further development of improved modulators of corticosteroid action.  相似文献   

20.
Inhibition of the local formation of estrogens seems to be an attractive strategy for pharmacological intervention in hormone-dependent disorders. The direct antiproliferative properties of ten nonsteroidal 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) inhibitors were investigated on human cancer cell lines of gynecological origin. The mechanism of the antiproliferative action was approximated by cell cycle analysis, fluorescent microscopy, BrdU assay, determination of caspase-3 activity and quantification of the expression of cell cycle regulators at mRNA level. Treatment of HeLa cells with some of the compounds resulted in a concentration-dependent inhibition of the G1–S transition and an increase in the apoptotic population. The most effective agents increased the expression of tumor suppressors p21 and p53, while CDK2 and Rb were down-regulated. The reported anticancer actions of the tested compounds are independent of the 17β-HSD1-inhibiting capacity. These results indicate that it is possible to combine direct antiproliferative activity and 17β-HSD1 inhibition resulting in novel agents with dual mode of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号