共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
S-nitrosylation of IRP2 regulates its stability via the ubiquitin-proteasome pathway 总被引:1,自引:0,他引:1 下载免费PDF全文
Nitric oxide (NO) is an important signaling molecule that interacts with different targets depending on its redox state. NO can interact with thiol groups resulting in S-nitrosylation of proteins, but the functional implications of this modification are not yet fully understood. We have reported that treatment of RAW 264.7 cells with NO caused a decrease in levels of iron regulatory protein 2 (IRP2), which binds to iron-responsive elements present in untranslated regions of mRNAs for several proteins involved in iron metabolism. In this study, we show that NO causes S-nitrosylation of IRP2, both in vitro and in vivo, and this modification leads to IRP2 ubiquitination followed by its degradation in the proteasome. Moreover, mutation of one cysteine (C178S) prevents NO-mediated degradation of IRP2. Hence, S-nitrosylation is a novel signal for IRP2 degradation via the ubiquitin-proteasome pathway. 相似文献
5.
Increased IRP1 and IRP2 RNA binding activity accompanies a reduction of the labile iron pool in HFE-expressing cells. 总被引:5,自引:0,他引:5
Cindy N Roy Kenneth P Blemings Kathryn M Deck Paige S Davies Emily L Anderson Richard S Eisenstein Caroline A Enns 《Journal of cellular physiology》2002,190(2):218-226
Iron regulatory proteins (IRPs), the cytosolic proteins involved in the maintenance of cellular iron homeostasis, bind to stem loop structures found in the mRNA of key proteins involved iron uptake, storage, and metabolism and regulate the expression of these proteins in response to changes in cellular iron needs. We have shown previously that HFE-expressing fWTHFE/tTA HeLa cells have slightly increased transferrin receptor levels and dramatically reduced ferritin levels when compared to the same clonal cell line without HFE (Gross et al., 1998, J Biol Chem 273:22068-22074). While HFE does not alter transferrin receptor trafficking or non-transferrin mediated iron uptake, it does specifically reduce (55)Fe uptake from transferrin (Roy et al., 1999, J Biol Chem 274:9022-9028). In this report, we show that IRP RNA binding activity is increased by up to 5-fold in HFE-expressing cells through the activation of both IRP isoforms. Calcein measurements show a 45% decrease in the intracellular labile iron pool in HFE-expressing cells, which is in keeping with the IRP activation. These results all point to the direct effect of the interaction of HFE with transferrin receptor in lowering the intracellular labile iron pool and establishing a new set point for iron regulation within the cell. 相似文献
6.
Iron regulatory protein 2 (IRP2), a regulator of iron metabolism, is modulated by ubiquitination and degradation. We have shown that IRP2 degradation is triggered by heme-mediated oxidation. We report here that not only Cys201, an invariant residue in the heme regulatory motif (HRM), but also His204 is critical for IRP2 degradation. Spectroscopic studies revealed that Cys201 binds ferric heme, whereas His204 is a ferrous heme binding site, indicating the involvement of these residues in sensing the redox state of the heme iron and in generating the oxidative modification. Moreover, the HRM in IRP2 has been suggested to play a critical role in its recognition by the HOIL-1 ubiquitin ligase. Although HRMs are known to sense heme concentration by simply binding to heme, the HRM in IRP2 specifically contributes to its oxidative modification, its recognition by the ligase, and its sensing of iron concentration after iron is integrated into heme. 相似文献
7.
Root cultures of various solanaceous plants grow well in vitro and produce large amounts of tropane alkaloids. Enzyme activity that converts hyoscyamine to 6β-hydroxyhyoscyamine is present in cell-free extracts from cultured roots of Hyoscyamus niger L. The enzyme hyoscyamine 6β-hydroxylase was purified 3.3-fold and characterized. The hydroxylation reaction has absolute requirements for hyoscyamine, 2-oxoglutarate, Fe2+ ions and molecular oxygen, and ascorbate stimulates this reaction. Only the l-isomer of hyoscyamine serves as a substrate; d-hyoscyamine is nearly inactive. Comparisons were made with a number of root, shoot, and callus cultures of the Atropa, Datura, Duboisia, Hyoscyamus, and Nicotiana species for the presence of the hydroxylase activity. Decarboxylation of 2-oxoglutarate during the conversion reaction was studied using [1-14C]-2-oxoglutarate. A 1:1 stoichiometry was shown between the hyoscyamine-dependent formation of CO2 from 2-oxoglutarate and the hydroxylation of hyoscyamine. Therefore, the enzyme can be classified as a 2-oxoglutarate-dependent dioxygenase (EC 1.14.11.-). Both the supply of hyoscyamine and the hydroxylase activity determine the amounts of 6β-hydroxyhyoscyamine and scopolamine produced in alkaloid-producing cultures. 相似文献
8.
Purification and characterization of flavone synthase I, a 2-oxoglutarate-dependent desaturase 总被引:4,自引:0,他引:4
L Britsch 《Archives of biochemistry and biophysics》1990,282(1):152-160
Soluble flavone synthase I from illuminated parsley cells was purified to near homogeneity by a six-step procedure. A molecular mass of 48 +/- 2 kDa was determined by gel permeation chromatography and denaturing polyacrylamide gel electrophoresis. A single protein with an isoelectric point at pH 4.8 +/- 0.1 was detected on isoelectric focusing gels, which catalyzed the overall conversion of 2S-flavanones into the corresponding flavones in the presence of molecular oxygen, 2-oxoglutarate, ferrous ion, and ascorbate. Apparent Michaelis constants for 2S-naringenin, 2S-eriodictyol, and 2-oxoglutarate were determined as 5, 8, and 16 microM, respectively. (+)-Dihydrokaempferol and 2R-naringenin were not accepted as substrates. The enzyme was strongly inhibited by Cu2+ and Zn2+. Potent competitive inhibition with respect to 2-oxoglutarate was observed with 2,4-pyridinedicarboxylate (Ki = 1.8 microM). With crude extracts as well as with the purified enzyme neither the hypothetical intermediate 2-hydroxyflavanone nor a dehydratase activity capable of converting the chemically synthesized compound to flavone could be observed. Moreover, the introduction of the double bond into the substrate naringenin was not altered by addition of chemically synthesized 2-hydroxynaringenin into the reaction mixture. Therefore, 2-hydroxyflavanones are apparently not freely dissociable intermediates in the biosynthesis of flavones in parsley and are not capable of entering the active site of the enzyme to compete with the flavanone. It is postulated that flavone synthase I catalyzes double-bond formation by direct abstraction of vicinal hydrogen atoms at C-2 and C-3 of the substrate. Thus, flavone synthase I is a member of a novel subgroup within the 2-oxoglutarate-dependent dioxygenases that can be referred to as 2-oxoglutarate-dependent desaturases. 相似文献
9.
Saito K Kobayashi M Gong Z Tanaka Y Yamazaki M 《The Plant journal : for cell and molecular biology》1999,17(2):181-189
Anthocyanidin synthase (ANS), an enzyme of the biosynthetic pathway to anthocyanin, has been postulated to catalyze the reaction(s) from the colorless leucoanthocyanidins to the colored anthocyanidins. Although cDNAs have been isolated that encode putative ANS, which exhibits significant similarities in amino acid sequence with members of a family of 2-oxoglutarate-dependent oxygenases, no biochemical evidence has been presented which identifies the actual reaction that is catalyzed by ANS. Here we show that anthocyanidins are formed in vitro through 2-oxoglutarate-dependent oxidation of leucoanthocyanidins catalyzed by the recombinant ANS and subsequent acid treatment. A cDNA encoding ANS was isolated from red and green formas of Perilla frutescens by differential display of mRNA. Recombinant ANS tagged with maltose-binding-protein (MBP) was purified, and the formation of anthocyanidins from leucoanthocyanidins was detected by the ANS-catalyzed reaction in the presence of ferrous ion, 2-oxoglutarate and ascorbate, being followed by acidification with HCI. Equimolar stoichiometry was confirmed for anthocyanidin formation and liberation of CO2 from 2-oxoglutarate. The presumptive two-copy gene of ANS was expressed in leaves and stems of the red forma of P. frutescens but not in the green forma plant. This corresponds to the accumulation pattern of anthocyanin. The mechanism of the reaction catalyzed by ANS is discussed in relation to the molecular evolution of a family of 2-oxoglutarate-dependent oxygenases. 相似文献
10.
11.
Martinez Benitez E Stolz A Becher A Wolf DH 《Biochemical and biophysical research communications》2011,(3):528-532
In eukaryotes, membrane and soluble proteins of the secretory pathway enter the endoplasmic reticulum (ER) after synthesis in an unfolded state. Directly after entry, most proteins are modified with glycans at suitable glycosylation sites and start to fold. A protein that cannot fold properly will be degraded in a process called ER associated degradation (ERAD). Failures in ERAD, either by loss of function or by premature degradation of proteins, are a cause of severe diseases. Therefore, the search for novel ERAD components to gain better insight in this process is of high importance. Carbohydrate trimming is a relevant process in ER quality control. In this work a novel putative yeast mannosidase encoded by the open reading frame YLR057W was identified and named Mnl2. Deletion of MNL2 diminished the degradation efficiency of misfolded CPY* in the absence of the cognate mannosidase Mnl1, indicating a specific role in ERAD. 相似文献
12.
13.
14.
15.
Matsui T Nakajima A Fujii H Matera KM Migita CT Yoshida T Ikeda-Saito M 《The Journal of biological chemistry》2005,280(44):36833-36840
Heme oxygenase (HO) catalyzes the catabolism of heme to biliverdin, CO, and a free iron through three successive oxygenation steps. The third oxygenation, oxidative degradation of verdoheme to biliverdin, has been the least understood step despite its importance in regulating HO activity. We have examined in detail the degradation of a synthetic verdoheme IXalpha complexed with rat HO-1. Our findings include: 1) HO degrades verdoheme through a dual pathway using either O(2) or H(2)O(2); 2) the verdoheme reactivity with O(2) is the lowest among the three O(2) reactions in the HO catalysis, and the newly found H(2)O(2) pathway is approximately 40-fold faster than the O(2)-dependent verdoheme degradation; 3) both reactions are initiated by the binding of O(2) or H(2)O(2) to allow the first direct observation of degradation intermediates of verdoheme; and 4) Asp(140) in HO-1 is critical for the verdoheme degradation regardless of the oxygen source. On the basis of these findings, we propose that the HO enzyme activates O(2) and H(2)O(2) on the verdoheme iron with the aid of a nearby water molecule linked with Asp(140). These mechanisms are similar to the well established mechanism of the first oxygenation, meso-hydroxylation of heme, and thus, HO can utilize a common architecture to promote the first and third oxygenation steps of the heme catabolism. In addition, our results infer the possible involvement of the H(2)O(2)-dependent verdoheme degradation in vivo, and potential roles of the dual pathway reaction of HO against oxidative stress are proposed. 相似文献
16.
Fernández C Ferrández A Miñambres B Díaz E García JL 《Applied and environmental microbiology》2006,72(11):7422-7426
We show here that the paaABCDE genes of the paa cluster responsible for phenylacetate degradation in Escherichia coli W encode a five-component oxygenase that hydroxylates phenylacetyl-coenzyme A (CoA), the first intermediate of the pathway. The primary structure of the subunits of bacterial phenylacetyl-CoA oxygenases revealed that these enzymes constitute the prototype of a new and distinct group of the large bacterial diiron multicomponent oxygenase family. 相似文献
17.
In-vivo degradation pathway of an excised intervening sequence 总被引:2,自引:0,他引:2
18.
Sunday A. Adebusoye 《Biodegradation》2017,28(1):37-51
Cupriavidus sp. strain SK-3, previously isolated on polychlorinated biphenyl mixtures, was found to aerobically utilize a wide spectrum of substituted aromatic compounds including 4-fluoro-, 4-chloro- and 4-bromobenzoic acids as a sole carbon and energy source. Other chlorobenzoic acid (CBA) congeners such as 2-, 3-, 2,3-, 2,5-, 3,4- and 3,5-CBA were all rapidly transformed to respective chlorocatechols (CCs). Under aerobic conditions, strain SK-3 grew readily on 4-CBA to a maximum concentration of 5 mM above which growth became impaired and yielded no biomass. Growth lagged significantly at concentrations above 3 mM, however chloride elimination was stoichiometric and generally mirrored growth and substrate consumption in all incubations. Experiments with resting cells, cell-free extracts and analysis of metabolite pools suggest that 4-CBA was metabolized in a reaction exclusively involving an initial hydrolytic dehalogenation yielding 4-hydroxybenzoic acid, which was then hydroxylated to protocatechuic acid (PCA) and subsequently metabolized via the β-ketoadipate pathway. When strain SK-3 was grown on 4-CBA, there was gratuitous induction of the catechol-1,2-dioxygenase and gentisate-1,2-dioxygenase pathways, even if both were not involved in the metabolism of the acid. While activities of the modified ortho- and meta-cleavage pathways were not detectable in all extracts, activity of PCA-3,4-dioxygenase was over ten-times higher than those of catechol-1,2- and gentisate-1,2-dioxygenases. Therefore, the only reason other congeners were not utilized for growth was the accumulation of CCs, suggesting a narrow spectrum of the activity of enzymes downstream of benzoate-1,2-dioxygenase, which exhibited affinity for a number of substituted analogs, and that the metabolic bottlenecks are either CCs or catabolites of the modified ortho-cleavage metabolic route. 相似文献
19.