首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Whilst forest policy promotes cultivation and regeneration of beech dominated forest ecosystems, beech itself is a highly drought sensitive tree species likely to suffer from the climatic conditions prognosticated for the current century. Taking advantage of model ecosystems with cool-moist and warm-dry local climate, the latter assumed to be representative for future climatic conditions, the effects of climate and silvicultural treatment (different thinning regimes) on water status, nitrogen balance and growth parameters of adult beech trees and beech regeneration in the understorey were assessed. In addition, validation experiments with beech seedlings were carried out under controlled conditions, mainly in order to assess the effect of drought on the competitive abilities of beech. As measures of water availability xylem flow, shoot water potential, stomatal conductance as well as delta (13)C and delta (18)O in different tissues (leaves, phloem, wood) were analysed. For the assessment of nitrogen balance we determined the uptake of inorganic nitrogen by the roots as well as total N content and soluble N compounds in different tissues of adult and young trees. Retrospective and current analysis of delta (13)C, growth and meteorological parameters revealed that beech growing under warm-dry climatic conditions were impaired in growth and water balance during periods with low rain-fall. Thinning affected water, N balance and growth mostly of young beech, but in a different way under different local climatic conditions. Under cool, moist conditions, representative for the current climatic and edaphic conditions in beech forests of Central Europe, thinning improves nutrient and water status consistent to published literature and long-term experience of forest practitioners. However, beech regeneration was impaired as a result of thinning at higher temperatures and under reduced water availability, as expected in future climate.  相似文献   

2.
Saplings of Fagus sylvatica and Picea abies were grown in mono‐ and mixed cultures in a 2‐year phytotron study under all four combinations of ambient and elevated ozone (O3) and carbon dioxide (CO2) concentrations. The hypotheses tested were (1) that the competitiveness of beech rather than spruce is negatively affected by the exposure to enhanced O3 concentrations, (2) spruce benefits from the increase of resource availability (elevated CO2) in the mixed culture and (3) that the responsiveness of plants to CO2 and O3 depends on the type of competition (i.e. intra vs. interspecific). Beech displayed a competitive disadvantage when growing in mixture with spruce: after two growing seasons under interspecific competition, beech showed significant reductions in leaf gas exchange, biomass development and crown volume as compared with beech plants growing in monoculture. In competition with spruce, beech appeared to be nitrogen (N)‐limited, whereas spruce tended to benefit in terms of its plant N status. The responsiveness of the juvenile trees to the atmospheric treatments differed between species and was dominated by the type of competition: spruce growth benefited from elevated CO2 concentrations, while beech growth suffered from the enhanced O3 regime. In general, interspecific competition enhanced these atmospheric treatment effects, supporting our hypotheses. Significant differences in root : shoot biomass ratio between the type of competition under both elevated O3 and CO2 were not caused by readjustments of biomass partitioning, but were dependent on tree size. Our study stresses that competition is an important factor driving plant development, and suggests that the knowledge about responses of plants to elevated CO2 and/or O3, acquired from plants growing in monoculture, may not be transferred to plants grown under interspecific competition as typically found in the field.  相似文献   

3.
To investigate the short‐term consequences of direct competition between beech and sycamore maple on root N uptake and N composition, mycorrhizal seedlings of both tree species were incubated for 4 days (i.e. beech only, sycamore maple only or both together) in an artificial nutrient solution with low N availability. On the fourth day, N uptake experiments were conducted to study the effects of competition on inorganic and organic N uptake. For this purpose, multiple N sources were applied with a single label. Furthermore, fine roots were sampled and analysed for total amino acids, soluble protein, total nitrogen, nitrate and ammonium content. Our results clearly show that both tree species were able to use inorganic and organic N sources. Uptake of inorganic and organic N by beech roots was negatively affected in the presence of the competing tree species. In contrast, the presence of beech stimulated inorganic N uptake by sycamore maple roots. Both the negative effect of sycamore maple on N uptake of beech and the positive effect of beech on N uptake of sycamore maple led to an increase in root soluble protein in beech, despite an overall decrease in total N concentration. Thus, beech compensated for the negative effects of the tree competitor on N uptake by incorporating less N into structural N components, but otherwise exhibited the same strategy as the competitor, namely, enhancing soluble protein levels in roots when grown under competition. It is speculated that enhanced enzyme activities of so far unknown nature are required in beech as a defence response to inter‐specific competition.  相似文献   

4.
Carbon exchange rates (CER) and whole-plant carbon balances of beech (Fagus grandifolia) and sugar maple (Acer saccharum) were compared for seedlings grown under low irradiance to determine the effects of atmospheric CO2 enrichment on shade-tolerant seedlings of co-dominant species. Under contemporary atmospheric CO2, photosynthetic rate per unit mass of beech was lower than for sugar maple, and atmospheric CO2 enrich ment enhanced photosynthesis for beech only. Aboveground respiration per unit mass decreased with CO2 enrichment for both species while root respiration per unitmass decreased for sugar maple only. Under contemporary atmoapheric CO2, beech had lower C uptake per plant than sugar maple, while C losses per plant to nocturnal aboveground and root respiration were similar for both species. Under elevated CO2, C uptake per plant was similar for both species, indicating a significant relative increase in whole-seedling CER with CO2 enrich ment for beech but not for sugar maple. Total C loss per plant to aboveground respiration was decreased for beech only because increase in sugar maple leaf mass counterbalanced a reduction in respiration rates. Carbon loss to root respiration per plant was not changed by CO2 enrichment for either species. However, changes in maintenance respiration cost and nitrogen level suggest changes in tissue composition with elevated CO2. Beech had a greater net daily C gain with CO2 enrichment than did sugar maple in contrast to a lower one under contemporary CO2. Elevated CO2 preferentially enhances the net C balance of beech by increasing photosynthesis and reducing respiration cost. In all cases, the greatest C lost was by roots, indicating the importance of belowground biomass in net C gain. Relative growth rate estimated from biomass accumulation was not affected by CO2 enrichment for either species possibly because of slow growth under low light. This study indicates the importance of direct effects of CO2 enrichment when predicting potential change in species distribution with global climate change.  相似文献   

5.
We investigated the effect of (a) different local climate and (b) thinning of the forest canopy on growth and N status of naturally regenerated European beech seedlings in a beech forest on shallow rendzina soil in southern Germany. For this purpose, a 15N-tracing experiment was conducted during the growing season of the year 2000 with beech seedlings growing on a warm, dry SW-exposed site and a cooler, moist NE-exposed site, and in a thinned and a control stand at each site. Biomass, 15N uptake and partitioning and total N concentrations of beech seedlings were determined. Site and thinning produced clear differences, particularly at the end of the growing season. Biomass and cumulative 15N uptake of beech seedlings then increased due to thinning on the NE site and decreased on the SW site. Total N concentrations in leaves, roots and stems of beech seedlings responded similarly. Therefore, growth and N status of beech seedlings are found to be favoured by thinning under cool-moist conditions. However, under higher temperature and reduced water availability—conditions that are prognosticated in the near future—thinning reduces N uptake and plant N concentration and, thus, impairs N balance and growth of beech regeneration.  相似文献   

6.
This study identifies the important role of climate change and photosynthetic photon flux density (PPFD) in the regenerative competence of ash and beech seedlings in 12 inter- and intra-specific competition designs in simulated mixed ash-beech forest gaps under conditions of non-limiting soil volume, water and nutrient supply. The growth conditions simulated natural forest conditions as closely as possible. Simulations were performed by growing interacting seedling canopies for one season in temperature-regulated closed-top chambers (CTCs). Eight CTCs were used in a factorial design with replicate treatments of [CO2] x temperature x PPFD x competition design. [CO2] tracked ambient levels or was 360 micromol mol-1 higher. Temperature tracked ambient levels or was 2.8 degrees C higher. PPFD on two plant tables inside each CTC was 16% and 5% of open-field levels, respectively, representative of typical light flux levels in a natural forest gap. In several of the competition designs, climate change made the ash seedlings grow taller than the beech seedlings and, at the same time, attain a larger leaf area and a larger total biomass. Advantages of this type for ash were found particularly at lower PPFD. There was a positive synergistic interaction of elevated temperature x [CO2] for both species, but more so for ash. There are many uncertainties when a study of chambered seedlings is to be projected to real changes in natural forests. Nevertheless, this study supports a possible future shift towards ash in north European, unmanaged, mixed ash-beech forests in response to the predicted climate change.  相似文献   

7.
Abstract. Following a full mast production in autumn 1995 in the old‐growth beech forest of la Tillaie (France), cupules, live and dead 1‐yr old seedlings were counted in September 1996 in 40 plots, representing a wide range of ecological conditions. The influence of geomorphology and forest stage on mast production and on seedling establishment and survival was studied. Maximum seedling abundance did not occur in areas with the largest cupule abundance, but this result was not statistically significant. The presence of a shallow sandstone table under Fontainebleau sand, where beech is far from its ecological optimum, positively influenced the production of mast but negatively influenced seedling survival. Contrary to expectation, the early biostatic rather than the late biostatic phase seemed to be the best stage for beech regeneration. Gaps also provide good environmental conditions for seedling establishment. Humus and light conditions, water availability and competition between beech individuals may explain the results. Light was the main factor influencing mast production in mature stages, and drought was an important factor causing seedling mortality. This study points out the importance of seedling survival for regeneration patterns in beech forests.  相似文献   

8.
Aims Increasing anthropogenic nitrogen (N) deposition has been claimed to induce changes in species composition and community dynamics. A greenhouse experiment was conducted to examine the effect of increased N availability on growth and functional attributes of seedlings of five tree species with different life history characteristics under varying irradiances. The following questions have been addressed: (i) how do the pioneer and non-pioneer species respond in absolute growth and relative growth rate (RGR) to the interaction of light and nitrogen? (ii) how does the interaction between irradiance and nitrogen availability modulate growth attributes (i.e. functional attributes)? (iii) is there any variation in growth responses between leguminous and non-leguminous species along the light and nitrogen gradients?Methods Seedlings of five tree species (Acacia catechu, Bridelia retusa, Dalbergia sissoo, Lagerstroemia parviflora and Terminalia arjuna) were subjected to twelve combinations of irradiance and N levels. Various growth traits, including height (HT), basal area (BA), whole plant dry biomass (M D), leaf mass per unit area (LMA), leaf area ratio (LAR), net assimilation rate (NAR), RGR, biomass fractions, root-to-shoot ratio (R:S) and leaf nitrogen content, were studied to analyse intra- and inter-specific responses to interacting light and N gradients.Important findings Significant interactions for irradiance and N availability for majority of growth attributes indicates that growth and biomass allocation of seedlings were more responsive to N availability under high irradiance. However, species responded differentially to N addition and they did not follow successional status. Slow growers (B. retusa, a shade-tolerant species and L. parviflora, a light demander) exhibited greater response to N enrichment than the fast growers (A. catechu, D. sissoo and T. arjuna). However, N-mediated increment in growth traits was greater in non-legumes (B. retusa, L. parviflora and T. arjuna) compared with that of legumes (A. catechu and D. sissoo). Allocation of biomass to root was strongly suppressed at the highest N supply across species; however, at high irradiance and high N availability, a greater suppression in R:S ratio was observed for B. retusa. NAR was a stronger determinant of RGR relative to LAR, suggesting its prominent role in increased RGR along increasing irradiances. Overall, a higher growth response of slow-growing species to elevated N levels, particularly the non-pioneers (B. retusa and L. parviflora) suggests that future N deposition may lead to perturbations in competition hierarchies and species composition, ultimately affecting community dynamics in nutrient-poor tropical dry forests.  相似文献   

9.
Theoretical plant growth models postulate that the relative rates of shoot and root growth are largely modulated by signals related to carbon and nitrogen status of the plant. To test this experimentally, 6-week-old vegetative cuttings of grapevine (Vitis vinifera L. cv Merlot) were grown aeroponically in different controlled conditions of irradiance (13.8, 8.4 and 5.3 mol PAR m−2 day−1) and/or nitrogen nutrition (0.15, 1.20 and 7.11 mM N). Total non-structural carbohydrates (TNC) and amino acids (FAA) in leaves and roots were analysed 0, 6 and 28 days after treatment initiation. Both whole-plant biomass accumulation as well as C and N contents were highly responsive to light and N availability. At day 28, plant dry weight was significantly reduced in shaded vines (−35% of that of the control plants) and stimulated under the high irradiance environment (+30%). Deprivation of N enhanced root growth (+51%) at the expense of above-ground growth, whereas leaf dry weight was significantly greater in the high-N treatment than in the control. Vines grown under low-N and high irradiance conditions had the highest root-to-shoot ratios and those grown under low light and high N the lowest. Finally, redistribution of biomass among vegetative vine parts was significantly related to different indicators of the vine C:N status measured either at the whole-plant (N concentration) or at the organ level (TNC:FAA ratio), suggesting that root-to-shoot biomass partitioning was controlled by some aspect of plant C:N balance. Such relationships will be useful to improve allocation rules in a process-based growth model of grapevine.  相似文献   

10.
There is presently no consensus about the factor(s) driving photosynthetic acclimation and the intra-canopy distribution of leaf characteristics under natural conditions. The impact was tested of local (i) light quality (red/far red ratio), (ii) leaf irradiance (PPFD(i)), and (iii) transpiration rate (E) on total non-structural carbohydrates per leaf area (TNC(a)), TNC-free leaf mass-to-area ratio (LMA), total leaf nitrogen per leaf area (N(a)), photosynthetic capacity (maximum carboxylation rate and light-saturated electron transport rate), and leaf N partitioning between carboxylation and bioenergetics within the foliage of young walnut trees grown outdoors. Light environment (quantity and quality) was controlled by placing individual branches under neutral or green screens during spring growth, and air vapour pressure deficit (VPD) was prescribed and leaf transpiration and photosynthesis measured at branch level by a branch bag technique. Under similar levels of leaf irradiance, low air vapour pressure deficit decreased transpiration rate but did not influence leaf characteristics. Close linear relationships were detected between leaf irradiance and leaf N(a), LMA or photosynthetic capacity, and low R/FR ratio decreased leaf N(a), LMA and photosynthetic capacity. Irradiance and R/FR also influenced the partitioning of leaf nitrogen into carboxylation and electron light transport. Thus, local light level and quality are the major factors driving photosynthetic acclimation and intra-canopy distribution of leaf characteristics, whereas local transpiration rate is of less importance.  相似文献   

11.
The aim of this study was to investigate the influence of ectomycorrhizal fungi (EMF) on the architecture of and nitrogen (N) partitioning in young beech (Fagus sylvatica) plants in response to different light regimes and water deprivation. We hypothesized that EMF modify biomass partitioning and architecture of young beech plants by increased N uptake in comparison with non-mycorrhizal (NM) plants and that therefore, the drought responses of EM and NM plants diverge. We anticipated that full light-exposed plants were more drought tolerant due to improved water status and nutrition, whereas shade-acclimated EM plants were more drought susceptible because of decreased mycorrhizal colonization. To test these hypotheses seedlings were grown in native or sterilized forest soil. To avoid effects of soil pretreatment NM and EM plants were transplanted into sand-peat culture systems and exposed to shade, drought or the combination of both factors. Shade resulted in reduced root biomass production decreasing the root-to-shoot ratio. Mild drought stress (pre-dawn water potential [Ψpd] = −1.3 MPa) did not affect biomass partitioning. EMF colonization did not increase plant biomass, but had strong effects on root architecture: the numbers of root tips as well as the absolute and specific root lengths were increased because of formation of thin roots, especially in the diameter classes from 0.2 to 0.8 mm. In contrast to our expectation N uptake of well irrigated EM plants was not increased despite their larger potential for soil exploitation. Overall, EM plants exhibited higher amounts of carbon fixed per unit of N taken up than NM plants and shifted N partitioning towards the roots. Beneficial effects of EMFs were apparent under mild drought but the responses differed depending on the light availability: shaded EM plants showed a delay in the decrease of Ψpd; light exposed EM plants showed increased N uptake compared with NM beeches. These results indicate that EMFs are involved in mediating divergent responses of beech to drought depending on the light availability.  相似文献   

12.
In a two-year phytotron study, juvenile trees of European beech (Fagus sylvatica) and Norway spruce (Picea abies) were grown in mixture under ambient and twice ambient ozone (O3) and infected with the root pathogen Phytophthora citricola. We investigated the influence of O3 on the trees' susceptibility to the root pathogen and assessed, through a 15N-labelling experiment, the impact of both treatments (O3 exposure and infection) on belowground competitiveness. The hypotheses tested were that: (1) both P. citricola and O3 reduce the belowground competitiveness (in view of N acquisition), and (2) that susceptibility to P. citricola infection is reduced through acclimation to enhanced O3 exposure. Belowground competitiveness was quantified via cost/benefit relationships, i.e., the ratio of structural investment in roots relative to their uptake of 15N. Beech had a lower biomass acquisition and captured less 15N under enhanced O3 and P. citricola infection alone than spruce, whereas the latter species appeared to profit from the lower resource acquisition of beech in these treatments. Nevertheless, in the combined treatment, susceptibility to P. citricola of spruce was increased, while beech growth and 15N uptake were not further reduced below the levels found under the single treatments. Potential trade-offs between stress defence, growth performance, and associated nitrogen status are discussed for trees affected through O3 and/or pathogen infection. With respect to growth performance, it is concluded that O3 enhances susceptibility to the pathogen in spruce, but apparently raises the defence capacity in beech..  相似文献   

13.
Effects of growth temperature and irradiance on nitrogen partitioning among photosynthetic components were studied. Plantago asiatica was grown under different temperature and light conditions. Growth conditions were regulated such that the Chl a/b ratio in leaves grown at a low temperature with a low irradiance was similar to that in leaves grown at a high temperature with a high irradiance, suggesting that the balance between acquisition and utilization of light energy in the photosynthetic apparatus was similar between the two growth conditions. When plotted against the leaf nitrogen content, the RuBP (ribulose-1,5-bisphosphate) carboxylase content did not significantly differ depending on growth conditions. Both high irradiance and low temperature decreased nitrogen partitioning to Chl-protein complexes. Low temperature increased nitrogen allocation to stroma FBPase (fructose-1,6-phosphatase) irrespective of growth irradiance. Gas exchange measurement indicated that the ratio of the electron transport (J(max)) to the maximum carboxylation rate (V(cmax)) was not affected by growth irradiance but by growth temperature. It is concluded that nitrogen partitioning between acquisition and utilization of light energy responds to both growth temperature and irradiance, while nitrogen partitioning between carboxylation and regeneration of RuBP responds only to growth temperature.  相似文献   

14.
 应用海拔引起的自然温度梯度作为气候变化研究的替代系统,结合网袋法,目的在于评价气候变化对草甸草原、羊草(Leymus chinensis )草原和大针茅(Stipa grandis)草原混合凋落物分解过程的可能影响。结果表明:较之当前气候,在气温升高2.7℃,降水基本保持不变的气候变化情景下,3种凋落物的分解速率分别提高了15.38%、35.83%和6.68%;而在温度升高2.2℃或更高,降水降低20%或更高的气候变化情景下,各种凋落物的分解速率将降低。此外,各种凋落物的分解动态对所模拟的气候变化情景的响应不同,但没有发现凋落物分解速率与凋落物本身C、N、C/N间的密切关系。  相似文献   

15.
Abstract. Studies were conducted on 41 five yr-old common beech (Fagus sylvatica) saplings collected in an old-growth beech wood (Fontainebleau forest, biological reserve of La Tillaie, France), under varying humus and light conditions, following gypsy moth (Lymantria dispar) caterpillar injuries. Aerial and subterranean parts of each sapling were described by means of 34 parameters and environmental conditions at the microsite, where each sapling was excavated, were characterized by 23 parameters. The development of beech saplings is strongly affected by microsite conditions. An increase in sapling size was associated with darkness of the A-horizon, typical of zones with poor mineralization of organic matter. Light conditions were more important in influencing the development of the root system than that of the aerial parts. Rooting depth was shallower and rate of mycorrhiza development by the black ascomycete Cenococcum geophilum was lower in microsites receiving incident light during the morning than in those never receiving incident light during this period. Results are discussed in the frame of survival of young beech individuals in varying environmental conditions, when submitted to competition by other vegetation and adverse climate conditions.  相似文献   

16.
A 2-yr phytotron study was conducted to investigate the intra- and inter-specific competitive behaviour of juvenile beech (Fagus sylvatica) and spruce (Picea abies). Competitiveness was analysed by quantifying the resource budgets that occur along structures and within occupied space of relevance for competitive interaction. Ambient and elevated CO(2) and ozone (O(3)) regimes were applied throughout two growing seasons as stressors for provoking changes in resource budgets, growth and allocation to facilitate the competition analysis. The hypothesis tested was that the ability to sequester space at low structural cost will determine the competitive success. Spruce was a stronger competitor than beech, as displayed by its higher above-ground biomass increments in mixed culture compared with monoculture. A crucial factor in the competitive success of spruce was its ability to enlarge crown volume at low structural costs, supporting the hypothesis. Interspecific competition with spruce resulted in a size-independent readjustment of above-ground allocation in beech (reduced leaf : shoot biomass ratio). The efficient use of resources for above-ground space sequestration proved to be a parameter that quantitatively reflects competitiveness.  相似文献   

17.
Forest ecosystems with low soil nitrogen (N) availability are characterized by direct competition for this growth-limiting resource between several players, i.e. various components of vegetation, such as old-growth trees, natural regeneration and understorey species, mycorrhizal fungi, free-living fungi and bacteria. With the increase in frequency and intensity of extreme climate events predicted in current climate change scenarios, also competition for N between plants and/or soil microorganisms will be affected. In this review, we summarize the present understanding of ecosystem N cycling in N-limited forests and its interaction with extreme climate events, such as heat, drought and flooding. More specifically, the impacts of environmental stresses on microbial release and consumption of bioavailable N, N uptake and competition between plants, as well as plant and microbial uptake are presented. Furthermore, the consequences of drying–wetting cycles on N cycling are discussed. Additionally, we highlight the current methodological difficulties that limit present understanding of N cycling in forest ecosystems and the need for interdisciplinary studies.  相似文献   

18.
Questions: Are there any sustainable or vulnerable habitats in which beech (Fagus crenata) forests could survive in Japan under 110 hypothetical climate change scenarios? Location: Six islands of Japan on which beech grows naturally. Methods: An ecological habitat model was used to simulate the potential habitat shifts of beech forests under 110 climate change scenarios. The amount of suitable habitat loss and gain was calculated with three migration options and risk surfaces. Vulnerable and sustainable habitats were identified to evaluate the potential risks and survival of beech forests. Results: The total areas of potential suitable habitats differed considerably depending on the future temperature and precipitation changes. Some areas on the Sea of Japan (SOJ) side showed higher probability of maintaining suitable habitats, whereas there were wider areas in which suitable habitats could not persist under any of the 110 climate change scenarios. Conclusions: The risk surfaces of the suitable habitats showed that decreases in precipitation along with increases in temperature reduced the total areas of suitable habitats. Increases in precipitation with increases in temperature of more than or equal to 2°C always reduce the areas of suitable habitats. Under increased precipitation with a temperature increase of <2°C, the areas of suitable habitats showed an increase, maintenance of the status quo or a decrease, depending on the size of the increase in precipitation. Beech forests in western Japan are predicted to be vulnerable to climate change, whereas some mountains on the SOJ side are predicted to be possible future refugia.  相似文献   

19.
Leaf morphology varies reliably with increasing altitude in many species, and this is generally considered to be related to temperature. Changes in irradiance with elevation may confound any relationships between a morphological character and altitude, particularly if altitude of origin affects the response to irradiance. Here we describe the interaction between irradiance and altitude of origin on leaf morphology of Southern beech, Nothofagus cunninghamii. Cuttings from each of four altitudes were grown in a glasshouse under full sunlight or 50% shade, and leaf morphology was related to irradiance, altitude of origin and accession. There was a significant interaction between irradiance and altitude of origin for leaf length, width, thickness, area, weight, specific leaf area and stomatal density. There was no effect of altitude on leaf length to width ratio or stomatal index, nor was there an interaction between irradiance and altitude of origin for these variables. These results show that the altitude of origin of a plant has an overriding impact on the leaf morphological response to irradiance. This must be considered in climatic reconstructions.  相似文献   

20.
Abstract

Understanding forest stand structural change is crucial for forest ecosystem research and management. The aim of our research was to identify structural and compositional changes and possible natural and anthropogenic causes of these changes in an old‐growth silver fir‐beech forest in the Dinaric mountains of Slovenia. Data on stand structure of the Rajhenavski Rog (51.14 ha) forest reserve originated from traditional methods, including five successive full callipering (1957–2007), two regeneration inventories and analysis of developmental phases (1984, 2007). A drastic decrease in the silver fir proportion in the last 50 years was probably caused by two indirect anthropogenic factors: polluted air and heavy browsing damage of silver fir regeneration. Nevertheless, other factors including reciprocal replacement of fir and beech and climate change also influenced the species composition, as similar processes were documented in the past with less air pollution. Furthermore, the alternation of fir and beech often developed asynchronously, regardless of ungulate density. Although the vertical profile of the old‐growth forest was opened due to the loss of fir trees during past decades, the establishment of more light‐demanding species was uncommon, primarily because the growing stock and forest climate were sustained. The results suggest a high stability of mixed Dinaric old‐growth forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号