首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Centrosome duplication and separation are of central importance for cell division. Here we provide a detailed account of this dynamic process in Dictyostelium. Centrosome behavior was monitored in living cells using a γ-tubulin–green fluorescent protein construct and correlated with morphological changes at the ultrastructural level. All aspects of the duplication and separation process of this centrosome are unusual when compared with, e.g., vertebrate cells. In interphase the Dictyostelium centrosome is a box-shaped structure comprised of three major layers, surrounded by an amorphous corona from which microtubules emerge. Structural duplication takes place during prophase, as opposed to G1/S in vertebrate cells. The three layers of the box-shaped core structure increase in size. The surrounding corona is lost, an event accompanied by a decrease in signal intensity of γ-tubulin–green fluorescent protein at the centrosome and the breakdown of the interphase microtubule system. At the prophase/prometaphase transition the separation into two mitotic centrosomes takes place via an intriguing lengthwise splitting process where the two outer layers of the prophase centrosome peel away from each other and become the mitotic centrosomes. Spindle microtubules are now nucleated from surfaces that previously were buried inside the interphase centrosome. Finally, at the end of telophase, the mitotic centrosomes fold in such a way that the microtubule-nucleating surface remains on the outside of the organelle. Thus in each cell cycle the centrosome undergoes an apparent inside-out/outside-in reversal of its layered structure.  相似文献   

2.
The Dictyostelium centrosome is a nucleus associated body consisting of a box-shaped core surrounded by the corona, an amorphous matrix functionally equivalent to the pericentriolar material of animal centrosomes which is responsible for the nucleation and anchoring of microtubules. Here we describe CP250 a component of the corona, an acidic coiled coil protein that is present at the centrosome throughout interphase while disappearing during prophase and reappearing at the end of late telophase. Amino acids 756-1148 of the 2110 amino acids are sufficient for centrosomal targeting and cell cycle–dependent centrosome association. Mutant cells lacking CP250 are smaller in size, growth on bacteria is delayed, chemotaxis is altered, and development is affected, which, in general, are defects observed in cytoskeletal mutants. Furthermore, loss of CP250 affected the nuclear envelope and led to reduced amounts and altered distribution of Sun-1, a conserved nuclear envelope protein that connects the centrosome to chromatin.  相似文献   

3.
Physarum possesses two different microtubule cytoskeletons. In amoebae, cytoplasmic and mitotic microtubules are nucleated by a typical centrosome. In contrast, it has been reported that plasmodia have an intranuclear spindle organizing centre (SPOC) devoid of centrioles. We present genetic evidence suggesting that the SPOC located in the centrosome is very similar to the intranuclear plasmodial SPOC. The immunostaining properties of a new monoclonal antibody against Physarum centrosome has been used to compare these different MTOCs. Moreover, a dense plasmodial microtubule network was present in interphase plasmodia and absent in plasmodia undergoing mitosis. MTOCs responsible for the nucleation of the cytoplasmic microtubule network and intranuclear SPOCs were located in two different compartments of the plasmodium.  相似文献   

4.
gamma-Tubulin is a centrosomal component involved in microtubule nucleation. To determine how this molecule behaves during the cell cycle, we have established several vertebrate somatic cell lines that constitutively express a gamma-tubulin/green fluorescent protein fusion protein. Near simultaneous fluorescence and DIC light microscopy reveals that the amount of gamma-tubulin associated with the centrosome remains relatively constant throughout interphase, suddenly increases during prophase, and then decreases to interphase levels as the cell exits mitosis. This mitosis-specific recruitment of gamma-tubulin does not require microtubules. Fluorescence recovery after photobleaching (FRAP) studies reveal that the centrosome possesses two populations of gamma-tubulin: one that turns over rapidly and another that is more tightly bound. The dynamic exchange of centrosome-associated gamma-tubulin occurs throughout the cell cycle, including mitosis, and it does not require microtubules. These data are the first to characterize the dynamics of centrosome-associated gamma-tubulin in vertebrate cells in vivo and to demonstrate the microtubule-independent nature of these dynamics. They reveal that the additional gamma-tubulin required for spindle formation does not accumulate progressively at the centrosome during interphase. Rather, at the onset of mitosis, the centrosome suddenly gains the ability to bind greater than three times the amount of gamma-tubulin than during interphase.  相似文献   

5.
In mammalian cells, the separation of centrosomes is a prerequisite for bipolar mitotic spindle assembly. We have investigated the respective contribution of the two cytoskeleton components, microtubules and actin filaments, in this process. Distances between centrosomes have been measured during cell cycle progression in Xenopus laevis XL2 cultured cells in the presence or absence of either network. We considered two stages in centrosome separation: the splitting stage, when centrosomes start to move apart (minimum distance of 1 microm), and the elongation stage (from 1 to 7 microm). In interphase, depolymerisation of microtubules by nocodazole significantly inhibited the splitting stage, while the elongation stage was, on the contrary, facilitated. In mitosis, while nocodazole treatment completely blocked spindle assembly, in prophase, we observed that 55% of the centrosomes separated, versus 94% in the control. Upon actin depolymerisation by latrunculin, splitting of the interphase centrosome was blocked, and cells entered mitosis with unseparated centrosomes. Cells compensated for this separation delay by increasing the length of both prophase and prometaphase stages to allow for centrosome separation until a minimal distance was reached. Then the cells passed through anaphase, performing proper chromosome separation, but cytokinesis did not occur, and binuclear cells were formed. Our results clearly show that the actin microfilaments participate in centrosome separation at the G2/M transition and work in synergy with the microtubules to accelerate centrosome separation during mitosis.  相似文献   

6.
Manfred Hauser 《Chromosoma》1972,36(2):158-175
Electron microscope studies on the premetaphase stages of micronuclear divisions of Paracineta limbata and Ichthyophtirius multifiliis showed that spindle material also exists during interphase. In the case of I. multifiliis scattered microtubule fragments persist in the nuclear space; in P. limbata the micronuclei contain a small paracrystalloid which is suggested to be microtubular protein. Wide microtubules, varying in diameter from 300 to 400 Å develop during intranuclear prophase near the nuclear envelope in both cases. There are good reasons to assume that they function as a kind of stem body during the enlargement of the surface area of the nuclear envelope. Later micronuclear prophase stages of both species show a some-what different development. In I. multifiliis, there are scattered groups of short microtubular segments, partly in parallel array, whereas in P. limbata the wide tubules are transformed into normal microtubules of 180–200 Å diameter. The nuclei of both species are similar at late prophase and prometaphase stages. Bundles of interpolar microtubules run between the chromosomes, and single microtubules, presumably induced by the chromosomes, cross them at different angles. The chromosome-induced microtubules appear a short time after the interpolars. At prometaphase stage all microtubules show a highly parallel arrangement and therefore it is suggested that chromosomal tubules reach their final polar orientation by the action of cross-bridges.  相似文献   

7.
We show here that type I protein kinase A is localized to microtubules during the entire cell cycle in epithelial (hepatoma, cervical carcinoma) and nonepithelial (myoblast) cell lines. The association of the type Ialpha regulatory subunit is very strong in all phases of mitosis, from prophase to cytokinesis. In interphase, the association appears weaker, reflecting perhaps a more dynamic molecular interaction. This regulatory subunit appears to recruit catalytic subunits as the latter are also associated with microtubules. BW1J hepatoma cells, stably transfected with either wild-type or mutant Ialpha regulatory subunit, are enriched in aberrant mitoses with multipolar spindles and in mono- or multinucleated giant cells. This suggests that type I protein kinase A could have a role in centrosome duplication and/or segregation, sister chromatid separation, or cytokinesis.  相似文献   

8.
The morphological characteristics of microtubule-organizing centers (MTOCs) in dermal interphase melanophores of Xenopus laevis larvae in vivo at 51-53 stages of development has been studied using immuno-stained semi-thick sections by fluorescent microscopy combined with computer image analysis. Computer image analysis of melanophores with aggregated and dispersed pigment granules, stained with the antibodies against the centrosome-specific component (CTR210) and tubulin, has revealed the presence of one main focus of microtubule convergence in the cell body, which coincides with the localization of the centrosome-specific antigen. An electron microscopy of those melanophores has shown that aggregation or dispersion of melanosomes is accompanied by changes in the morphological arrangement of the MTOC/centrosome. The centrosome in melanophores with dispersed pigment exhibits a conventional organization, and their melanosomes are situated in an immediate vicinity of the centrioles. In melanophores with aggregated pigment, MTOC is characterized by a three-zonal organization: the centrosome with centrioles, the centrosphere, and an outlying radial arrangement of microtubules and their associated inclusions. The centrosome in interphase melanophores is presumed to contain a pair of centrioles or numerous centrioles. Because of an inability of detecting additional MTOCs, it has been considered that an active MTOC in interphase melanophores of X. laevis is the centrosome. We assume that remaining intact microtubules in the cytoplasmic processes of mitotic melanophores (Rubina et al., 1999) derive either from the aster or the centrosome active at the interphase.  相似文献   

9.
Three types of microtubule-organizing centers are present in the interphase L-cells: centriolar matrix, pericentriolar satellites, and electron-dense bodies that are not attached to the centrioles. Different types of microtubule-organizing centers may be present simultaneously in the same centrosome. In most of the cells some microtubules have their proximal ends free, rather than attached to the microtubule-organizing center. A network of intermediate filaments is condensed around the centrosome. The intermediate filaments run from the centrosome parallel to the microtubules. Although the filaments are often in close proximity to the centrioles and microtubules, direct contacts between them are rare. The intermediate filaments have convergence foci of their own in the centrosome.  相似文献   

10.
To complete meiosis II in animal cells, the male DNA material needs to meet the female DNA material contained in the female pronucleus at the egg center, but it is not known how the male pronucleus, deposited by the sperm at the periphery of the cell, finds the cell center in large eggs. Pronucleus centering is an active process that appears to involve microtubules and molecular motors. For small and medium-sized cells, the force required to move the centrosome can arise from either microtubule pushing on the cortex, or cortically-attached dynein pulling on microtubules. However, in large cells, such as the fertilized Xenopus laevis embryo, where microtubules are too long to support pushing forces or they do not reach all boundaries before centrosome centering begins, a different force generating mechanism must exist. Here, we present a centrosome positioning model in which the cytosolic drag experienced by cargoes hauled by cytoplasmic dynein on the sperm aster microtubules can move the centrosome towards the cell’s center. We find that small, fast cargoes (diameter ∼100 nm, cargo velocity ∼2 µm/s) are sufficient to move the centrosome in the geometry of the Xenopus laevis embryo within the experimentally observed length and time scales.  相似文献   

11.
In cultivated in vitro interphase animal cells, microtubules form a network whose density is highest in the central cell area, in the region of centrosome, and decreases towards the cell periphery. Since identification of individual microtubules in the central cell area is significantly difficult and more often is impossible, there are several approaches to studying microtubules in the internal cell cytoplasm. These approaches are based on a decrease of microtubule density—both real, due to their partial depolymerization (by the action of cold temperatures or cytostatics), or apparent, due to a decrease of cell thickness (by photobleaching of preexisting microtubules and analysis of newly formed ones). In the present work, we propose a method based on the determination of optical density which allows evaluation of the state of the cytoplasmic microtubule system as a whole. The method consists of a comparison of the dependences describing changes of the microtubule optical density from the cell center to the periphery in controls and in experiments. Analysis of living cells by the proposed method has shown that the character of curves describing the decrease of optical density from the cell center to its periphery is different for various cell types; the dependence can be described both as an exponential regression (the CHO cell line) and as a linear regression (the NIH-3T3 and REF cell lines). Our previous studies have allowed the suggestion that the character of the dependence is determined by the ratio of free and centrosome-attached microtubules and by the position of their ends in the cell cytoplasm. To test this hypothesis, we considered model systems with all microtubules assumed to be in a straight orientation and divergent radially from the centrosome, but with different arrangements of plus-and minus-ends. In the model system, in which all the microtubule minus-ends are attached to the centrosome while the plus-ends are at different distances from it, the microtubule density is described by the exponential (f(x) = ae ?bx ). Introduction of free microtubules into the system leads to a change of the character of this dependence, and the system in which the concentration of free microtubules with minus ends located at different distances from the cytoplasm is 5 times higher than that of the centrosome-attached microtubules is described by the linear regression equation (f(x) = k * x + b), which corresponds to the experimentally obtained dependences for 3T3 and REF cells. Thus, we believe that even in cells with a radial microtubule system, free microtubules may constitute the majority.  相似文献   

12.
The process of basidiospore formation in a mutant strain Fisc of Coprinus macrorhizus, a heterothallic species of Basidiomycete, which forms monokaryotic fruiting bodies was examined. A single nucleus in a young basidium divided mitotically and two daughter nuclei were fused subsequently. The fused nucleus then divided meiotically forming four basidiospores on a basidium. The typical chromosome behaviours in the first meiotic prophase were observed. Synaptonemal complexes were observed in a basidium at the first meiotic prophase. A continuous illumination of fruiting bodies was effective to arrest meiosis in monokaryotic fruiting bodies at the particular stage of meiotic division.  相似文献   

13.
The Arabidopsis MAP65s are a protein family with similarity to the microtubule-associated proteins PRC1/Ase1p that accumulate in the spindle midzone during late anaphase in mammals and yeast, respectively. Here we investigate the molecular and functional properties of AtMAP65-5 and improve our understanding of AtMAP65-1 properties. We demonstrate that, in vitro, both proteins promote the formation of a planar network of antiparallel microtubules. In vivo, we show that AtMAP65-5 selectively binds the preprophase band and the prophase spindle microtubule during prophase, whereas AtMAP65-1-GFP selectively binds the preprophase band but does not accumulate at the prophase spindle microtubules that coexists within the same cell. At later stages of mitosis, AtMAP65-1 and AtMAP65-5 differentially label the late spindle and phragmoplast. We present evidence for a mode of action for both proteins that involves the binding of monomeric units to microtubules that “zipper up” antiparallel arranged microtubules through the homodimerization of the N-terminal halves when adjacent microtubules encounter.  相似文献   

14.
Summary The ultrastructure of isolated generative cells ofAllemanda neriifolia at interphase and prophase was studied. The microtubule organization of the isolated cells was also investigated by immunofluorescence microscopy with a monoclonal anti--tubulin. After the generative cells had been isolated from the growing pollen tubes by osmotic shock, most of the cells were at prophase and only a few were at interphase. The interphase cell is spindle shaped and contains an ellipsoidal nucleus. In addition to the usual organelles, the cytoplasm of the interphase cell contains numerous vesicles (each measuring 40–50 nm in diameter) and two sets of longitudinally oriented microtubule bundles — one in the cortical region and the other near the nucleus. Most of the prophase cells are spherical in shape. Based on the ultrastructure and the pattern of microtubule cytoskeleton organization three types of prophase cells can be recognized. (1) Early prophase cell, which contains the usual organelles, numerous vesicles, and a spherical nucleus with condensed chromosomes. Longitudinally oriented microtubule bundles can no longer be seen present in the early prophase cell. A new type of structure resembling a microtubule aggregate appears in the cytoplasm. (2) Mid prophase cell, which has a spherical nucleus containing chromosomes that appear more condensed than those seen in the early prophase cell. In addition to containing the usual organelles, the cytoplasm of this cell contains numerous apparently randomly oriented microtubules. Few vesicles are seen and microtubule aggregates are no longer present. (3) Late prophase cell, typified by the lack of a nuclear envelope. Consequently, the chromosomes become randomly scattered in the cytoplasm. Microtubules are still present and some become closely associated with the chromosomes. The changes in the ultrastructure and in the pattern of microtubule organization in the interphase and prophase cells are discussed in relation to the method of isolation of the generative cells.  相似文献   

15.
When vertebrate somatic cells are selectively irradiated in the nucleus during late prophase (<30 min before nuclear envelope breakdown) they progress normally through mitosis even if they contain broken chromosomes. However, if early prophase nuclei are similarly irradiated, chromosome condensation is reversed and the cells return to interphase. Thus, the G2 checkpoint that prevents entry into mitosis in response to nuclear damage ceases to function in late prophase. If one nucleus in a cell containing two early prophase nuclei is selectively irradiated, both return to interphase, and prophase cells that have been induced to returned to interphase retain a normal cytoplasmic microtubule complex. Thus, damage to an early prophase nucleus is converted into a signal that not only reverses the nuclear events of prophase, but this signal also enters the cytoplasm where it inhibits e.g., centrosome maturation and the formation of asters. Immunofluorescent analyses reveal that the irradiation-induced reversion of prophase is correlated with the dephosphorylation of histone H1, histone H3, and the MPM2 epitopes. Together, these data reveal that a checkpoint control exists in early but not late prophase in vertebrate cells that, when triggered, reverses the cell cycle by apparently downregulating existing cyclin-dependent kinase (CDK1) activity.  相似文献   

16.
Toxoplasma gondii replicates asexually by a unique internal budding process characterized by interwoven closed mitosis and cytokinesis. Although it is known that the centrosome coordinates these processes, the spatiotemporal organization of mitosis remains poorly defined. Here we demonstrate that centrosome positioning around the nucleus may signal spindle assembly: spindle microtubules (MTs) are first assembled when the centrosome moves to the basal side and become extensively acetylated after the duplicated centrosomes reposition to the apical side. We also tracked the spindle MTs using the MT plus end–binding protein TgEB1. Endowed by a C-terminal NLS, TgEB1 resides in the nucleoplasm in interphase and associates with the spindle MTs during mitosis. TgEB1 also associates with the subpellicular MTs at the growing end of daughter buds toward the completion of karyokinesis. Depletion of TgEB1 results in escalated disintegration of kinetochore clustering. Furthermore, we show that TgEB1’s MT association in Toxoplasma and in a heterologous system (Xenopus) is based on the same principles. Finally, overexpression of a high-MT-affinity TgEB1 mutant promotes the formation of overstabilized MT bundles, resulting in avulsion of otherwise tightly clustered kinetochores. Overall we conclude that centrosome position controls spindle activity and that TgEB1 is critical for mitotic integrity.  相似文献   

17.
The morphology of budding and conjugating cells and associated changes in microtubules and actin distribution were studied in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma) by phase-contrast and fluorescence microscopy. The non-budding interphase cell showed a nucleus situated in the central position and bundles of cytoplasmic microtubules either stretching parallel to the longitudinal cell axis or randomly distributed in the cell; none of these, however, had a character of astral microtubules. During mitosis, the nucleus divided in the daughter cell, cytoplasmic microtubules disappeared and were replaced by a spindle. The cytoplasmic microtubules reappeared after mitosis had finished. Actin patches were present both in the bud and the mother cell. Cells were induced to mate by transfer to ribitol- containing medium without nitrogen. Partner cells fused by conjugation projections where actin patches had been accumulated. Cell fusion resulted in a zygote that produced a basidium with parallel bundles of microtubules extended along its axis and with actin patches concentrated at the apex. The fused nucleus moved towards the tip of the basidium. During this movement, nuclear division was taking place; the nuclei were eventually distributed to basidiospores. Mitochondria appeared as vesicles of various sizes; their large amounts were found, often lying adjacent to microtubules, in the subcortical cytoplasm of both vegetative cells and zygotes.  相似文献   

18.
We have identified a putative 35-kilodalton protein that colocalizes with microtubules and displays a unique spatial and temporal distribution during the cell cycle of HeLa cells. This protein has been given the designation MSA-35. MSA-35 first appears in association with microtubules and centrosomes of interphase cells exhibiting centrosome separation as a prelude to cell division. This protein is found in conjunction with kinetochore microtubules throughout their appearance. MSA-35 transiently associates with interpolar microtubules following anaphase and the pattern of MSA-35 reactivity in telophase cells suggests that there are at least seven domains within the intercellular bridge. The distribution of MSA-35 during and following recovery from mitotic arrest with nocodazole suggest that it is also present at low levels in interphase cells, can associate with interphase centrosomes, and colocalizes with nascent microtubules. The complex spatial and temporal distribution of MSA-35 indicates that it may be necessary for a series of events in the mitotic process such as the bundling of microtubules.  相似文献   

19.
Xklp2 is a plus end–directed Xenopus kinesin-like protein localized at spindle poles and required for centrosome separation during spindle assembly in Xenopus egg extracts. A glutathione-S-transferase fusion protein containing the COOH-terminal domain of Xklp2 (GST-Xklp2-Tail) was previously found to localize to spindle poles (Boleti, H., E. Karsenti, and I. Vernos. 1996. Cell. 84:49–59). Now, we have examined the mechanism of localization of GST-Xklp2-Tail. Immunofluorescence and electron microscopy showed that Xklp2 and GST-Xklp2-Tail localize specifically to the minus ends of spindle pole and aster microtubules in mitotic, but not in interphase, Xenopus egg extracts. We found that dimerization and a COOH-terminal leucine zipper are required for this localization: a single point mutation in the leucine zipper prevented targeting. The mechanism of localization is complex and two additional factors in mitotic egg extracts are required for the targeting of GST-Xklp2-Tail to microtubule minus ends: (a) a novel 100-kD microtubule-associated protein that we named TPX2 (Targeting protein for Xklp2) that mediates the binding of GST-Xklp2-Tail to microtubules and (b) the dynein–dynactin complex that is required for the accumulation of GST-Xklp2-Tail at microtubule minus ends. We propose two molecular mechanisms that could account for the localization of Xklp2 to microtubule minus ends.  相似文献   

20.
Lamins, the type V nuclear intermediate filament proteins, are reported to function in both interphase and mitosis. For example, lamin deletion in various cell types can lead to an uneven distribution of the nuclear pore complexes (NPCs) in the interphase nuclear envelope, whereas deletion of B-type lamins results in spindle orientation defects in mitotic neural progenitor cells. How lamins regulate these functions is unknown. Using mouse cells deleted of different combinations or all lamins, we show that lamins are required to prevent the aggregation of NPCs in the nuclear envelope near centrosomes in late G2 and prophase. This asymmetric NPC distribution in the absence of lamins is caused by dynein forces acting on NPCs via the dynein adaptor BICD2. We further show that asymmetric NPC distribution upon lamin depletion disrupts the distribution of BICD2 and p150 dynactin on the nuclear envelope at prophase, which results in inefficient dynein-driven centrosome separation during prophase. Therefore lamins regulate microtubule-based motor forces in vivo to ensure proper NPC distribution in interphase and centrosome separation in the mitotic prophase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号