首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary This paper describes the afferent projections of hair sensilla of the pro- and mesothoracic legs and the lateral thoracic sclerites of larval and adultTenebrio molitor and the corresponding set of pupal hair sensilla. The sensory neurons that innervate the hair sensilla of larval or adult insects project somatotopically into the thoracic neuropil. Different types of sensilla on the same region of the body surface project to the same zone of the ipsilateral thoracic ventral neuropil but exhibit different arborization patterns. Although there is a profound reorganization of body surface sensilla, the basic somatotopic layout of the larva is maintained in the adult. The sensory neurons that innervate the pupal hair sensilla possess central projections similar to those of the corresponding adult sensory neurons. The central projections of pupal sensory neurons are somatotopically oriented. Their projection pattern is serially homologous in the thoracic and the abdominal ganglia. The central projection pattern of the described pupal sensory neurons is constant throughout pupation. MAb 22C10 immunoreactivity allows an estimate of the timing of the early differentiation of the imaginal sensory neurons originating during pupation. Ablation experiments indicate that pupal sensory neurons influence the central projection pattern of the differentiating imaginal sensory neurons.  相似文献   

2.
Patterning of the antennal lobe of adult Drosophila occurs through a complex interaction between sensory neurons, glia, and central neurons of larval and adult origin. Neurons from the olfactory sense organs are organized into distinct fascicles lined by glial cells. The glia originate from one of the three types of sensory lineages-specified by the proneural gene atonal. Gain-of-function as well as loss-of-function analysis validates a role for cells of the Atonal lineage in the ordered fasciculation of sensory neurons. Upon entry of the antennal nerve to central regions, sensory neurons at first remain closely associated with central glia which lie around the periphery of the lobe anlage. Coincident with the arrival of sensory neurons into the brain, glial precursors undergo mitosis and neural precursors expressing Dachshund appear around the lobe. Sensory neurons and glial cells project into the lobe at around the same time and are likely to coordinate the correct localization of different glomeruli. The influence of sensory neurons on the development of the olfactory lobe could serve to match and lock peripheral and central properties important for the generation of olfactory behavior.  相似文献   

3.
The epithelial receptors are represented in the mammalian brain cortex in a genetically defined, strictly regulated manner. Until the 1970s, the cortical maps and the wiring of the central nervous system were thought to be rather static and unchangeable. Subsequently, however, studies of sensory and motor cortical maps in particular genetic strains of animals and in animals with different perinatal or adult histories have revealed that the map organization can be modified at any time between conception and death. Especially studies of the effects of peripheral and central lesions and of perceptual learning on the sensory and motor cortical representations have had a dramatic effect in alerting neuroscientists and therapists to the reorganizational capacity of the adult brain. From a theoretical aspect, these changes in the cortical maps provide useful models for an understanding of the changes that can occur in the integrative functions of complex brain networks throughout life.  相似文献   

4.
Chemical sensory signals play a crucial role in eliciting motor behaviors. We now review the different motor behaviors induced by chemosensory stimuli in fish as well as their neural substrate. A great deal of research has focused on migratory, reproductive, foraging, and escape behaviors but it is only recently that the molecules mediating these chemotactic responses have become well-characterized. Chemotactic responses are mediated by three sensory systems: olfactory, gustatory, and diffuse chemosensory. The olfactory sensory neuron responses to chemicals are now better understood. In addition, the olfactory projections to the central nervous system were recently shown to display an odotopic organization in the forebrain. Moreover, a specific downward projection underlying motor responses to olfactory inputs was recently described.  相似文献   

5.
6.
How neurons connect to form functional circuits is central to the understanding of the development and function of the nervous system. In the somatosensory system, perception of sensory stimuli to the head requires specific connections between trigeminal sensory neurons and their many target areas in the central nervous system. Different trigeminal subtypes have specialized functions and downstream circuits, but it has remained unclear how subtype-specific axonal projection patterns are formed. Using zebrafish as a model system, we followed the development of two trigeminal sensory neuron subtypes: one that expresses trpa1b, a nociceptive channel important for sensing environmental chemicals; and a distinct subtype labeled by an islet1 reporter (Isl1SS). We found that Trpa1b and Isl1SS neurons have overall similar axon trajectories but different branching morphologies and distributions of presynaptic sites. Compared with Trpa1b neurons, Isl1SS neurons display reduced branch growth and synaptogenesis at the hindbrain-spinal cord junction. The subtype-specific morphogenesis of Isl1SS neurons depends on the guidance receptor Robo2. robo2 is preferentially expressed in the Isl1SS subset and inhibits branch growth and synaptogenesis. In the absence of Robo2, Isl1SS afferents acquire many of the characteristics of Trpa1b afferents. These results reveal that subtype-specific activity of Robo2 regulates subcircuit morphogenesis in the trigeminal sensory system.  相似文献   

7.
 Rhythmic motor output is generally assumed to be produced by central pattern generators or, more specific, central oscillators, the rhythmic output of which can be entrained and modulated by sensory input and descending control. In the case of locomotor systems, the output of the central system, i.e., the output obtained after deafferentation of sensory feedback, shows many of the temporal characteristics of real movements. Therefore the term fictive locomotion has been coined. This article concentrates on a specific locomotor behavior, namely walking; in particular walking in invertebrates. In contrast to the traditional view, an alternative hypothesis is formulated to interpret the functional sense of these central oscillations which have been found in many cases. It is argued that the basic function of the underlying circuit is to avoid cocontraction of antagonistic muscles. Such a system operates best with an inherent period just above the maximum period observed in real walking. The circuit discussed in this article (Fig. 2) shows several properties in common with results described as “fictive walking”. It furthermore could explain a number of properties observed in animals walking in different situations. According to this hypothesis, the oscillations found after deafferentation are side effects occurring in specific artificial situations. If, however, a parameter called central excitation is large enough, the system can act as a central oscillator that overrides the sensory input completely. Received: 18 May 2001 / Accepted in revised form: 20 November 2001  相似文献   

8.
土耳其斯坦东毕吸虫的扫描电镜观察   总被引:10,自引:0,他引:10  
血吸虫类中如血居科(sanguinicolidae)的Aporocotyle simplex Odhner,1900、裂体科(Schistosomatidae)的日本血吸虫(Schistosoma japonicum)曼氏血吸虫(S.mansoni)及埃及血吸虫(S.haematobium)等多种血吸虫均经扫描电镜观察(Johnson and Moriearts,1969;Silk et al., 1969;Robson and Erasmus, 1970; Miller et al., 1972; Kuntz et al.,1976、1977;Voge et al., 1978; Thulin, 1980;及何毅勋和马金鑫,1980等)。关于土耳其斯坦东毕吸虫[Orientobitharzia lurkestanica(skrjabin,1913)Dut et Srivastava,1955]的体表扫描电镜尚无报告,而只见有此虫种体壁及肠管的透射电镜观察的资料(Lavrov and Fedoseenke,1978)。本文部分作者最近在内蒙东部兴安岭以南部分地区进行牛羊土  相似文献   

9.
Neuronal development of the majority of trochozoan animals with biphasic pelago-bentic life cycle starts from transient peripheral neurons, which do not belong to the central nervous system and are mainly located in the apical sensory organ and in the hyposphere. Some of these neurons are pioneer and send neurites that form a scaffold upon which the adult central nervous system later develops. In representative species of molluscs and polychaetes, immunolabelling with the antibodies against neurotransmitters serotonin and FMRFamide, and acetylated α-tubulin revealed that the structure of almost all early peripheral neurons is typical for sensory, most probably chemosensory cells: flask shape, and cilia at the end of the apical dendrite or inside the distal ampoule. Morphology, transmitter specificity, location and projections of the early sensory cells differ in trochophores of different species thus suggesting different origin of these cells. In polychaete larvae, pharmacological inhibition of serotonin synthesis in early peripheral neurons did not affect the development, whereas its increase resulted in developmental arrest and neural malformations, suggesting that early peripheral sensory neurons are involved in developmental regulation.  相似文献   

10.
K S Vogel  A M Davies 《Neuron》1991,7(5):819-830
To investigate how the onset of neurotrophic factor dependence in neurons is coordinated with the arrival of their axons in the target field, we have studied the survival of four populations of cranial sensory neurons whose axons reach their common central target field, the hindbrain, at different times. We show that neurons whose axons reach the hindbrain first survive for a short time in culture before responding to brain-derived neurotrophic factor (BDNF). Neurons whose axons reach the hindbrain later survive longer before responding to BDNF. These differences in survival, which arise prior to gangliogenesis, may play a role in coordinating trophic interactions for cranial sensory neurons.  相似文献   

11.
12.
Although feeding in Aplysia is mediated by a central pattern generator (CPG), the activity of this CPG is modified by afferent input. To determine how afferent activity produces the widespread changes in motor programs that are necessary if behavior is to be modified, we have studied two classes of feeding sensory neurons. We have shown that afferent-induced changes in activity are widespread because sensory neurons make a number of synaptic connections. For example, sensory neurons make monosynaptic excitatory connections with feeding motor neurons. Sensori-motor transmission is, however, regulated so that changes in the periphery do not disrupt ongoing activity. This results from the fact that sensory neurons are also electrically coupled to feeding interneurons. During motor programs sensory neurons are, therefore, rhythmically depolarized via central input. These changes in membrane potential profoundly affect sensori-motor transmission. For example, changes in membrane potential alter spike propagation in sensory neurons so that spikes are only actively transmitted to particular output regions when it is behaviorally appropriate. To summarize, afferent activity alters motor output because sensory neurons make direct contact with motor neurons. Sensori-motor transmission is, however, centrally regulated so that changes in the periphery alter motor programs in a phase-dependent manner.  相似文献   

13.
Nervous system development requires the correct specification of neuron position and identity, followed by accurate neuron class-specific dendritic development and axonal wiring. Recently the dendritic arborization (DA) sensory neurons of the Drosophila larval peripheral nervous system (PNS) have become powerful genetic models in which to elucidate both general and class-specific mechanisms of neuron differentiation. There are four main DA neuron classes (I-IV)(1). They are named in order of increasing dendrite arbor complexity, and have class-specific differences in the genetic control of their differentiation(2-10). The DA sensory system is a practical model to investigate the molecular mechanisms behind the control of dendritic morphology(11-13) because: 1) it can take advantage of the powerful genetic tools available in the fruit fly, 2) the DA neuron dendrite arbor spreads out in only 2 dimensions beneath an optically clear larval cuticle making it easy to visualize with high resolution in vivo, 3) the class-specific diversity in dendritic morphology facilitates a comparative analysis to find key elements controlling the formation of simple vs. highly branched dendritic trees, and 4) dendritic arbor stereotypical shapes of different DA neurons facilitate morphometric statistical analyses. DA neuron activity modifies the output of a larval locomotion central pattern generator(14-16). The different DA neuron classes have distinct sensory modalities, and their activation elicits different behavioral responses(14,16-20). Furthermore different classes send axonal projections stereotypically into the Drosophila larval central nervous system in the ventral nerve cord (VNC)(21). These projections terminate with topographic representations of both DA neuron sensory modality and the position in the body wall of the dendritic field(7,22,23). Hence examination of DA axonal projections can be used to elucidate mechanisms underlying topographic mapping(7,22,23), as well as the wiring of a simple circuit modulating larval locomotion(14-17). We present here a practical guide to generate and analyze genetic mosaics(24) marking DA neurons via MARCM (Mosaic Analysis with a Repressible Cell Marker)(1,10,25) and Flp-out(22,26,27) techniques (summarized in Fig. 1).  相似文献   

14.
We have tested the hypothesis that larval neurones guide growth of adult sensory axons in Drosophila. We show that ablation of larval sensory neurones causes defects in the central projections of adult sensory neurones. Spiralling axons and ectopic projections indicate failure in axon growth guidance. We show that larval sensory neurones are required for peripheral pathfinding, entry into the CNS and growth guidance within the CNS. Ablation of subsets of neurones shows that larval sensory neurones serve specific guidance roles. Dorsal neurones are required for axon guidance across the midline, whereas lateral neurones are required for posterior growth. We conclude that larval sensory neurones pioneer the assembly of sensory arrays in adults.  相似文献   

15.
The response characteristics of 46 interneurones of the central complex in the bee brain to visual, various antennal and mechanical stimuli were studied. Different types of neurones can be distinguished anatomically. Intrinsic cells arborize only in the central complex. Segmental neurones innervate a segment of the protocerebral bridge and the central body and project to the lateral accessory lobes. Fan-shaped neurones have arborizations throughout the whole upper or lower division of the central body.Intrinsic neurones of the protocerebral bridge process visual information, the other cells display different and often multimodal response characteristics, which cannot be correlated with the neuroanatomical groups. Seventeen per cent of the cells did not respond at all to the stimuli presented. The role of the central complex in the processing of sensory information is discussed and compared with the mushroom bodies and the diffuse protocerebral lobes.  相似文献   

16.
Laboratory studies of the biological effects of low-frequency electromagnetic fields (EMFs) have demonstrated that the fields can produce or alter a wide range of phenomena. Explaining the diversity of the reported effects is a central problem. Our basic hypothesis is that the effects are generally indirect, and arise as a consequence of sensory transduction of the fields. In this view, EMF detection and its biological consequences occur in different types of cells. Experimental verification of the hypothesis will ultimately require data showing that the interaction of EMFs with tissue results in biological changes that are the same as or similar to changes that occur during sensory transduction. The goal was to identify the specific phenomena that would be expected to occur if the hypothesis were true. We therefore analyzed the presently accepted models of sensory transduction in the somatic and special senses. Many kinds of processes were identified in connection with transduction of different kinds of stimuli, but we found that a change in the conductance of a membrane ion channel in a neuron or a neuroepithelial cell was the earliest process that occurred in all forms of sensory transduction. Evidence from an appropriate model excitable cell or tissue that EMFs affect membrane currents or membrane potential would therefore support the hypothesis that EMF transduction is a species of sensory transduction.  相似文献   

17.
Polychaetes possess a wide range of sensory structures. These form sense organs of several kinds, including the appendages of the head region (palps, antennae, tentacular cirri), the appendages of the trunk region and pygidium (parapodial and pygidial cirri), the nuchal organs, the dorsal organs, the lateral organs, the eyes, the photoreceptor-like sense organs, the statocysts, various kinds of pharyngeal papillae as well as structurally peculiar sensory organs of still unknown function and the apical organs of trochophore larvae. Moreover, isolated or clustered sensory cells not obviously associated with other cell types are distributed all over the body. Whereas nuchal organs are typical for polychaetes and are lacking only in a few species, all other kinds of sensory organs are restricted to certain groups of taxa or species. Some have only been described in single species till now. Sensory cells are generally bipolar sensory cells and their cell bodies are either located peripherally within the epidermis or within the central nervous system. These sensory cells are usually ciliated and different types can be disinguished. Structure, function and phylogenetic importance of the sensory structures observed in polychaetes so far are reviewed. For evaluation of the relationships of the higher taxa in Annelida palps, nuchal organs and pigmented ocelli appear to be of special importance.  相似文献   

18.
The osphradium of molluscs is assumed to be a sensory organ. The present investigation in Lymnaea stagnalis has established two ultrastructurally different types of dendrites in the sensory epithelium. Cells immunoreactive to leucine-enkephalin and FMRFamide send processes to the sensory epithelium. These neurons of the osphradial ganglion are thus considered to be part of the sensory system, as are methionine-enkephalin-immunoreactive cells in the mantle wall in the vicinity of the osphradium. The complexity of the osphradial ganglion is further demonstrated by serotonin-immunoreactive neurons innervating the muscular coat around the osphradial canal and methionine-enkephalin-immunoreactive cells sending projections to the central nervous system.  相似文献   

19.
嗅球对嗅觉信息的处理   总被引:2,自引:0,他引:2  
哺乳动物的嗅觉系统拥有惊人的能力,它可以识别和分辨成千上万种分子结构各异的气味分子。这种识别能力是由基因决定的。近年来,分子生物学和神经生理学的研究使得我们对嗅觉识别的分子基础和嗅觉系统神经连接的认识有了质的飞跃。气味分子的识别是由一千多种气味受体完成的,鼻腔中的嗅觉感觉神经元表达这些气味受体基因。每个感觉神经元只表达一种气味受体基因。表达同种气味受体的感觉神经元投射到嗅球表面的一个或几个嗅小球中,从而在嗅球中形成一个精确的二维连接图谱。了解嗅球对气味信息的加工和处理方式是我们研究嗅觉系统信号编码的一个重要环节。文章概述并总结了有关嗅球信号处理的最新研究成果。  相似文献   

20.
Peripheral cranial sensory nerves projecting into the oral cavity receive food intake stimuli and transmit sensory signals to the central nervous system. They are derived from four cranial sensory ganglia, trigeminal, geniculate, petrosal, and nodose ganglia, each of which contains multiple kinds of sensory neurons with different cell morphologies and neuronal properties. We investigated the complex properties of these neurons from the viewpoint of gene expression using DNA microarrays. The 498 genes were selected from a total of 8,740 genes as showing tissue-dependent expression on the microarray by hierarchical cluster analysis, in which several genes known to be differentially expressed in cranial sensory ganglia are included. This suggests that DNA microarray cluster analysis revealed a number of characteristic genes for sensory neurons in these ganglia. Among the selected 498 genes, 44 genes are associated with neurotransmission, such as neuropeptides, their receptors, and vesicle transport, and 26 are ion channels regulating membrane potentials. The identification of a number of genes related directly to neural properties indicates that these sensory ganglia contain heterogeneous types of neurons with different neural properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号