首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report that the zebrafish mutation soulless, in which the development of locus coeruleus (LC) noradrenergic (NA) neurons failed to occur, disrupts the homeodomain protein Phox2a. Phox2a is not only necessary but also sufficient to induce Phox2b+ dopamine-beta-hydroxylase+ and tyrosine hydroxylase+ NA neurons in ectopic locations. Phox2a is first detected in LC progenitors in the dorsal anterior hindbrain, and its expression there is dependent on FGF8 from the mid/hindbrain boundary and on optimal concentrations of BMP signal from the epidermal ectoderm/future dorsal neural plate junction. These findings suggest that Phox2a coordinates the specification of LC in part through the induction of Phox2b and in response to cooperating signals that operate along the mediolateral and anteroposterior axes of the neural plate.  相似文献   

2.
3.
4.
5.
6.
7.
8.
The role of glial cell-line derived neurotrophic factor (GDNF) and neurotrophins in the development of locus coeruleus noradrenergic neurons was evaluated. We found that two neurotrophic factors previously reported to prevent the degeneration of lesioned adult central noradrenergic neurons, GDNF and neurotrophin 3 (NT3), do not play significant roles in the prenatal development of locus coeruleus noradrenergic neurons, as demonstrated by: (1) the lack of alterations in double Gdnf/Nt3 null mutant mice; and (2) the lack of survival-promoting effects of GDNF and/or NT3 in rat E13.5 primary cultures. In contrast, null mutant mice for TrkB, the tyrosine kinase receptor for brain-derived neurotrophic factor and neurotrophin 4, displayed a clear loss of locus coeruleus noradrenergic neurons. In accordance with this, treatment of rat E13.5 primary cultures with TrkB ligands prevented the early loss of noradrenergic neurons and maintained their survival for up to 6 days in vitro. Moreover, an additional 5-10-fold increase in the number of tyrosine hydroxylase positive noradrenergic neurons was detected after 12 hours in culture. This second effect of TrkB ligands involved neither proliferation nor survival, because the number of BrdU- or TUNEL-positive noradrenergic neurons did not change and the effect was elicited by delayed administration of either factor. Because TrkB ligands increased the number of tyrosine hydroxylase-positive cells expressing Phox2a, a paired homeodomain protein required for the development of locus coeruleus noradrenergic neurons, but did not affect the number of Phox2a-positive tyrosine hydroxylase-negative cells, our results suggest that the second effect of TrkB ligands may involve promoting or inducing a noradrenergic phenotype. In summary, our findings suggest that, unlike NT3 and GDNF, TrkB ligands are required and sufficient to promote the development of central noradrenergic neurons.  相似文献   

9.
The neural crest is a stem cell-like population exclusive to vertebrates that gives rise to many different cell types including chondrocytes, neurons and melanocytes. Arising from the neural plate border at the intersection of Wnt and Bmp signaling pathways, the complexity of neural crest gene regulatory networks has made the earliest steps of induction difficult to elucidate. Here, we report that tfap2a and foxd3 participate in neural crest induction and are necessary and sufficient for this process to proceed. Double mutant tfap2a (mont blanc, mob) and foxd3 (mother superior, mos) mob;mos zebrafish embryos completely lack all neural crest-derived tissues. Moreover, tfap2a and foxd3 are expressed during gastrulation prior to neural crest induction in distinct, complementary, domains; tfap2a is expressed in the ventral non-neural ectoderm and foxd3 in the dorsal mesendoderm and ectoderm. We further show that Bmp signaling is expanded in mob;mos embryos while expression of dkk1, a Wnt signaling inhibitor, is increased and canonical Wnt targets are suppressed. These changes in Bmp and Wnt signaling result in specific perturbations of neural crest induction rather than general defects in neural plate border or dorso-ventral patterning. foxd3 overexpression, on the other hand, enhances the ability of tfap2a to ectopically induce neural crest around the neural plate, overriding the normal neural plate border limit of the early neural crest territory. Although loss of either Tfap2a or Foxd3 alters Bmp and Wnt signaling patterns, only their combined inactivation sufficiently alters these signaling gradients to abort neural crest induction. Collectively, our results indicate that tfap2a and foxd3, in addition to their respective roles in the differentiation of neural crest derivatives, also jointly maintain the balance of Bmp and Wnt signaling in order to delineate the neural crest induction domain.  相似文献   

10.
11.
12.
The mechanism by which pluripotent progenitors give rise to distinct classes of mature neurons in vertebrates is not well understood. To address this issue we undertook a genetic screen for mutations which affect the commitment and differentiation of catecholaminergic (CA) [dopaminergic (DA), noradrenergic (NA), and adrenergic] neurons in the zebrafish, Danio rerio. The identified mutations constitute five complementation groups. motionless and foggy affect the number and differentiation state of hypothalamic DA, telencephalic DA, retinal DA, locus coeruleus (LC) NA, and sympathetic NA neurons. The too few mutation leads to a specific reduction in the number of hypothalamic DA neurons. no soul lacks arch-associated NA cells and has defects in pharyngeal arches, and soulless lacks both arch-associated and LC cell groups. Our analyses suggest that the genes defined by these mutations regulate different steps in the differentiation of multipotent CA progenitors. They further reveal an underlying universal mechanism for the control of CA cell fates, which involve combinatorial usage of regulatory genes.  相似文献   

13.
14.
The locus coeruleus of the rat is richly innervated by many aminergic neurons varying in amine content and in site of origin. There are adrenergic and noradrenergic neurons originating in the medulla oblongata, dopaminergic from the hypothalamus, serotonergic from the mesencephalon and also intrinsic noradrenergic neurons in the locus coeruleus complex. Of these, adrenergic and dopaminergic inputs appear relatively specific and powerful.  相似文献   

15.
To characterize the formation of the dopaminergic system in the developing zebrafish CNS, we cloned cDNAs encoding tyrosine hydroxylase (th), an enzyme in dopamine synthesis, and the dopamine transporter (dat), a membrane transport protein which terminates dopamine action by re-uptake. Dopaminergic neurons are first detected between 18 and 19 h post-fertilization in a cluster of cells in the ventral diencephalon. Subsequently, th and dat detection identifies dopaminergic neurons in the olfactory bulb, the pretectum, the retina and the locus coeruleus. Neurons expressing th but not dat are adrenergic or noradrenergic, and are found in the locus coeruleus, the medulla, the likely analog of the carotid body, and precursors of the enteric and sympathetic nervous system.  相似文献   

16.
The cell bodies of ascending noradrenergic neurons in the brain are located predominantly in the locus coeruleus. An in vitro model of locus coeruleus neurons could prove to be a useful tool in the investigation of noradrenergic neural networks and their associated pathophysiologies. The CATH.a cell line demonstrates some of the properties expected of locus coeruleus neurons, and the present study investigated the neurotransmitter uptake and release properties of the CATH.a cells. It was surprising that the CATH.a cells failed to accumulate [3H]noradrenaline ([3H]NA), suggesting the lack of a functional NA transporter. RT-PCR supported this finding by demonstrating the absence of NA transporter mRNA. Treatment of CATH.a cells with various differentiating agents failed to increase the [3H]NA uptake. Endogenous NA release was studied using HPLC detection, which revealed a lack of depolarisation-induced increases in endogenous NA release. A human NA transporter-transfected CATH.a cell line was generated (termed RUNT), and a study of the [3H]NA uptake revealed that the RUNT cells displayed significant uptake that could be blocked by cocaine (10 microM). Furthermore, the uptake capacity could be dramatically increased by differentiation of the cells with dibutyryl cyclic AMP (1 mM) for 24 h. Using dibutyryl cyclic AMP-differentiated RUNT cells, high K+ concentrations (50 mM) significantly increased [3H]NA release above basal levels.  相似文献   

17.
Zebrafish lacking functional sox10 have defects in non-ectomesenchymal neural crest derivatives including the enteric nervous system (ENS) and as such provide an animal model for human Waardenburg Syndrome IV. Here, we characterize zebrafish phox2b as a functionally conserved marker of the developing ENS. We show that morpholino-mediated knockdown of Phox2b generates fish modeling Hirschsprung disease. Using markers, including phox2b, we investigate the ontogeny of the sox10 ENS phenotype. As previously shown for melanophore development, ENS progenitor fate specification fails in these mutant fish. However, in addition, we trace back the sox10 mutant ENS defect to an even earlier time point, finding that most neural crest cells fail to migrate ventrally to the gut primordium.  相似文献   

18.
19.
20.
In the present study, we investigated the involvement of rhombomere 1 patterning proteins in the regulation of the major noradrenergic centre of the brain, the locus coeruleus. Primary cultures of rat embryonic day 13.5 locus coeruleus were treated with fibroblast growth factor-8, noggin and members of the bone morphogenetic and Wnt protein families. We show that bone morphogenetic proteins 2, 5 and 7 increase and noggin decreases the number of tyrosine hydroxylase-positive locus coeruleus neurons. Interestingly, from all Wnts expressed in the first rhombomere by embryonic day 12.5 in the mice, we only found expression of wnt5a mRNA in the vicinity of the locus coeruleus. In agreement with this finding, from all Wnts studied in vitro, only Wnt5a increased the number of tyrosine hydroxylase-positive neurons in locus coeruleus cultures. Finally, we also found that fibroblast growth factor-8 increased the number of tyrosine hydroxylase-positive cells in locus coeruleus cultures. Neither of the identified factors affected the survival of tyrosine hydroxylase-positive locus coeruleus noradrenergic neurons or the proliferation of their progenitors or neurogenesis. Instead, our results suggest that these patterning signals of rhombomere 1 may work to promote the differentiation of noradrenergic progenitors at later stages of development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号