首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Segmentation of the vertebrate hindbrain into rhombomeres is essential for the anterior-posterior patterning of cranial motor nuclei and their associated nerves. The vitamin A derivative, retinoic acid (RA), is an early embryonic signal that specifies rhombomeres, but its roles in neuronal differentiation within the hindbrain remain unclear. Here we have analyzed the formation of primary and secondary hindbrain neurons in the zebrafish mutant neckless (nls), which disrupts retinaldehyde dehydrogenase 2 (raldh2), and in embryos treated with retinoid receptor (RAR) antagonists. Mutation of nls disrupts secondary, branchiomotor neurons of the facial and vagal nerves, but not the segmental pattern of primary, reticulospinal neurons, suggesting that RA acts on branchiomotor neurons independent of its role in hindbrain segmentation. Very few vagal motor neurons form in nls mutants and many facial motor neurons do not migrate out of rhombomere 4 into more posterior segments. When embryos are treated with RAR antagonists during gastrulation, we observe more severe patterning defects than seen in nls. These include duplicated reticulospinal neurons and posterior expansions of rhombomere 4, as well as defects in branchiomotor neurons. However, later antagonist treatments after rhombomeres are established still disrupt branchiomotor development, suggesting that requirements for RARs in these neurons occur later and independent of segmental patterning. We also show that RA produced by the paraxial mesoderm controls branchiomotor differentiation, since we can rescue the entire motor innervation pattern by transplanting wild-type cells into the somites of nls mutants. Thus, in addition to its role in determining rhombomere identities, RA plays a more direct role in the differentiation of subsets of branchiomotor neurons within the hindbrain.  相似文献   

3.
The vitamin A derivative retinoic acid (RA) is a morphogen that patterns the anterior-posterior axis of the vertebrate hindbrain. Cellular retinoic acid-binding proteins (Crabps) transport RA within cells to both its nuclear receptors (RARs) and degrading enzymes (Cyp26s). However, mice lacking Crabps are viable, suggesting that Crabp functions are redundant with those of other fatty acid-binding proteins. Here we show that Crabps in zebrafish are essential for posterior patterning of the hindbrain and that they provide a key feedback mechanism that makes signaling robust as they are able to compensate for changes in RA production. Of the four zebrafish Crabps, Crabp2a is uniquely RA inducible and depletion or overexpression of Crabp2a makes embryos hypersensitive to exogenous RA. Computational models confirm that Crabp2a improves robustness within a narrow concentration range that optimizes a 'robustness index', integrating spatial information along the RA morphogen gradient. Exploration of signaling parameters in our models suggests that the ability of Crabp2a to transport RA to Cyp26 enzymes for degradation is a major factor in promoting robustness. These results demonstrate a previously unrecognized requirement for Crabps in RA signaling and hindbrain development, as well as a novel mechanism for stabilizing morphogen gradients despite genetic or environmental fluctuations in morphogen availability.  相似文献   

4.
Retinoic acid (RA) has been identified as a key signal involved in the posteriorization of vertebrate neural ectoderm. The main biosynthetic enzyme responsible for RA signaling in the hindbrain and spinal cord is Raldh2. However, neckless/raldh2-mutant (nls) zebrafish exhibit only mild degrees of anteriorization in the neural ectoderm, compared to full vitamin A deficiency in amniotes and the Raldh2-/- mouse. Here we investigated the role of RA during neuronal development in the zebrafish hindbrain and anterior spinal cord using DEAB, an inhibitor of retinaldehyde dehydrogenases. We show that the nls hindbrain and spinal cord are not fully devoid of RA, since blocking Raldh-mediated RA signaling leads to a more severe hindbrain phenotype than in nls. The anteroposterior distribution of branchiomotor neurons in the facial and more posterior nuclei depends on full RA signaling throughout early and late gastrula stages. In contrast, inhibition of RA synthesis after gastrulation reduces the number of branchiomotor neurons in the vagal nucleus, but has no effect on anteroposterior cell fates. In addition, blockage of RA-mediated signaling not only interferes with the differentiation of branchiomotor neurons and their axons in the hindbrain, but also affects the development of the posterior lateral line nerve.  相似文献   

5.
Retinoic acid (RA) signaling regulates multiple aspects of vertebrate embryonic development and tissue patterning, in part through the local availability of nuclear hormone receptors called retinoic acid receptors (RARs) and retinoid receptors (RXRs). RAR/RXR heterodimers transduce the RA signal, and loss-of-function studies in mice have demonstrated requirements for distinct receptor combinations at different stages of embryogenesis. However, the tissue-specific functions of each receptor and their individual contributions to RA signaling in vivo are only partially understood. Here we use morpholino oligonucleotides to deplete the four known zebrafish RARs (raraa, rarab, rarga, and rargb). We show that while all four are required for anterior-posterior patterning of rhombomeres in the hindbrain, there are unique requirements for rarga in the cranial mesoderm for hindbrain patterning, and rarab in lateral plate mesoderm for specification of the pectoral fins. In addition, the alpha subclass (raraa, rarab) is RA inducible, and of these only raraa expression is RA-dependent, suggesting that these receptors establish a region of particularly high RA signaling through positive-feedback. These studies reveal novel tissue-specific roles for RARs in controlling the competence and sensitivity of cells to respond to RA.  相似文献   

6.
All-trans retinoic acid (RA) is a key player in many developmental pathways. Most methods used to study its effects in development involve continuous all-trans RA activation by incubation in a solution of all-trans RA or by implanting all-trans RA-soaked beads at desired locations in the embryo. Here we show that the UV-driven photo-isomerization of 13-cis RA to the trans-isomer (and vice versa) can be used to non-invasively and quantitatively control the concentration of all-trans RA in a developing embryo in time and space. This facilitates the global or local perturbation of developmental pathways with a pulse of all-trans RA of known concentration or its inactivation by UV illumination. In zebrafish embryos in which endogenous synthesis of all-trans RA is impaired, incubation for as little as 5 minutes in 1 nM all-trans RA (a pulse) or 5 nM 13-cis RA followed by 1-minute UV illumination is sufficient to rescue the development of the hindbrain if performed no later than bud stage. However, if subsequent to this all-trans RA pulse the embryo is illuminated (no later than bud stage) for 1 minute with UV light (to isomerize, i.e. deactivate, all-trans RA), the rescue of hindbrain development is impaired. This suggests that all-trans RA is sequestered in embryos that have been transiently exposed to it. Using 13-cis RA isomerization with UV light, we further show that local illumination at bud stage of the head region (but not the tail) is sufficient to rescue hindbrain formation in embryos whose all-trans RA synthetic pathway has been impaired.  相似文献   

7.
8.
Sympathetic ganglia are composed of noradrenergic neurons and cholinergic neurons that differ in the expression of neurotransmitter-synthesizing enzymes, neurotransmitter transporters and neuropeptides. The analysis of the cholinergic differentiation during development revealed important principles involved in the generation of neuronal diversity, in particular the importance of signals from the innervated target. Some peripheral targets, such as the sweat glands in the mammalian footpads, are purely cholinergically innervated in the adult, whereas skeletal muscle arteries receive both noradrenergic and cholinergic innervation. For sympathetic neurons innervating sweat glands there is convincing evidence that these neurons are initially noradrenergic and that the interaction of innervating fibers and target tissue induces a shift in the neurotransmitter phenotype from noradrenergic to cholinergic. In addition to this target-dependent differentiation, an earlier expression of cholinergic characters was observed in sympathetic ganglia that occurs before target contact. These data raise the possibility that different subpopulations of cholinergic sympathetic neurons, innervating distinct peripheral targets, may develop along distinct schedules. In vitro studies suggest that growth factors of the family of neuropoietic cytokines are involved in the specification of the cholinergic sympathetic phenotype. Recent in vivo studies that interfered with cytokine receptor expression in developing avian sympathetic ganglia indicate that only the late, target-dependent differentiation depends on cytokine signaling. The signals involved in the early, target-independent expression of cholinergic properties remain to be determined, as well as the identity of the target-derived cytokine. Thus, cholinergic sympathetic differentiation seems to be more complex than expected, involving either both target-independent and target-dependent control or only target-induced differentiation, according to the specific neuronal subpopulation and target.  相似文献   

9.
10.
The anterior-posterior identities of cells in the hindbrain and cranial neural crest are thought to be determined by their Hox gene expression status, but how and when cells become committed to these identities remain unclear. Here we address this in zebrafish by cell transplantation, to test plasticity in hox expression in single cells. We transplanted cells alone, or in small groups, between hindbrain rhombomeres or between the neural crest primordia of pharyngeal arches. We found that transplanted cells regulated hox expression according to their new environments. The degree of plasticity, however, depended on both the timing and the size of the transplant. At later stages transplanted cells were more likely to be irreversibly committed and maintain their hox expression, demonstrating a progressive loss of responsiveness to the environmental signals that specify segmental identities. Individual transplanted cells also showed greater plasticity than those lying within the center of larger groups, suggesting that a community effect normally maintains hox expression within segments. We also raised experimental embryos to larval stages to analyze transplanted cells after differentiation and found that neural crest cells contributed to pharyngeal cartilages appropriate to the anterior-posterior level of the new cellular environment. Thus, consistent with models implicating hox expression in control of segmental identity, plasticity in hox expression correlates with plasticity in final cell fate.  相似文献   

11.
12.
Migration of neurons from their birthplace to their final target area is a crucial step in brain development. Here, we show that expression of the off-limits/frizzled3a (olt/fz3a) and off-road/celsr2 (ord/celsr2) genes in neuroepithelial cells maintains the facial (nVII) motor neurons near the pial surface during their caudal migration in the zebrafish hindbrain. In the absence of olt/fz3a expression in the neuroepithelium, nVII motor neurons extended aberrant radial processes towards the ventricular surface and mismigrated radially to the dorsomedial part of the hindbrain. Our findings reveal a novel role for these genes, distinctive from their already known functions, in the regulation of the planar cell polarity (i.e. preventing integration of differentiated neurons into the neuroepithelial layer). This contrasts markedly with their reported role in reintegration of neuroepithelial daughter cells into the neuroepithelial layer after cell division.  相似文献   

13.
14.
Abstract

All-trans-retinoic acid (ATRA) can regulate some specific genes expression in various tissue and cells via nuclear retinoic acid receptors (RARs), including three subtypes: retinoic acid receptor-alpha (RAR-α), retinoic acid receptor-beta (RAR-β) and retinoic acid receptor-gamma (RAR-γ). Podocyte injury plays a pivotal role in the progression of glomerulosclerosis (GS). This study was performed to study the potential signal pathway of ATRA in the expression of matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9) in injury podocyte. Cells were divided into three groups: group of negative control (NC), group of injury podocyte induced by adriamycin (ADR) (AI) and group of ADR inducing podocyte injury model treated with ATRA (AA). The cells morphology changes were detected using microscope and scanning electron microscopy. MMP-2 and MMP-9 enzymic activity was detected using the gelatin zymography method. Protein and mRNA expressions of MMP-2, MMP-9, RAR-α, RAR-β and RAR-γ were measured by western-blot and real-time RT-PCR. Enzymatic activity of MMP-2 and MMP-9 in group AA was significantly enhanced compared to AI group after ATRA-treated 24?h (p?<?0.05). The protein and mRNA expressions of MMP-2/MMP-9 in group AA were significantly increased than those in group AI at both 12 and 24?h time points (p?<?0.05). Compared to group AI, RAR-α and RAR-γ protein/mRNA expressions of group AA were significantly increased at both 12 and 24?h time points (p?<?0.05). There was no difference for the expression of RAR-β between group AI and group AA (p?>?0.05). RAR-α protein level was positively correlated with MMP-2 or MMP-9 protein expression (p?<?0.05), and RAR-γ protein level was also positively correlated with MMP-2 or MMP-9 protein expression (p?<?0.05). In conclusion, ATRA may increase expression of MMP-2 and MMP-9 by the potential signal pathway of RAR-α and RAR-γ in injury podocyte induced by adriamycin, but not RAR-β.  相似文献   

15.
Mutants mice carrying targeted inactivations of both retinoic acid receptor (RAR) alpha and RAR gamma (A alpha/A gamma mutants) were analyzed at different embryonic stages, in order to establish the timing of appearance of defects that we previously observed during the fetal period. We show that embryonic day (E)9.5 A alpha/A gamma embryos display severe malformations, similar to those already described in retinaldehyde dehydrogenase 2 null mutants. These malformations reflect early roles of retinoic acid signaling in axial rotation, segmentation and closure of the hindbrain; formation of otocysts, pharyngeal arches and forelimb buds; and in the closure of the primitive gut. The hindbrain of E8.5 A alpha/A gamma embryos shows a posterior expansion of rhombomere 3 and 4 (R3 and R4) markers, but fails to express kreisler, a normal marker of R5 and R6. This abnormal hindbrain phenotype is strikingly different from that of embryos lacking RAR alpha and RAR beta (A alpha/A beta mutants), in which we have previously shown that the territory corresponding to R5 and R6 is markedly enlarged. Administration of a pan-RAR antagonist at E8.0 to wild-type embryos cultured in vitro results in an A alpha/A beta-like hindbrain phenotype, whereas an earlier treatment at E7.0 yields an A alpha/A gamma-like phenotype. Altogether, our data suggest that RAR alpha and/or RAR gamma transduce the RA signal that is required first to specify the prospective R5/R6 territory, whereas RAR beta is subsequently involved in setting up the caudal boundary of this territory.  相似文献   

16.
Pai T  Chen Q  Zhang Y  Zolfaghari R  Ross AC 《Biochemistry》2007,46(51):15198-15207
Aldose-1-epimerase (mutarotase) catalyzes the interconversion of alpha and beta hexoses, which is essential for normal carbohydrate metabolism and the production of complex oligosaccharides. Galactose mutarotase (GALM) has been well characterized at the protein level, but information is lacking on the regulation of GALM gene expression. We report herein that all-trans-retinoic acid (RA), an active metabolite of vitamin A that is known to induce myeloid lineage cell differentiation into macrophage-like cells, induces a rapid and robust regulation of GALM mRNA expression in human myeloid cells. all-trans-RA at a physiological concentration (20 nM), or Am580, a ligand selective for the nuclear retinoid receptor RARalpha, increased GALM mRNA in THP-1 cells, with significantly increased expression in 2 h, increasing further to an approximately 8-fold elevation after 6-40 h (P < 0.005). In contrast, tumor necrosis factor-alpha did not increase GALM mRNA expression, although it is capable of inducing cell differentiation. RA also increased GALM mRNA in U937 and HL-60 cells. The increase in GALM mRNA by RA was blocked by pretreating THP-1 cells with actinomycin D but not by cycloheximide. GALM protein and mutarotase activity were also increased time dependently in RA-treated THP-1 cells. In addition to GALM, several other genes in the biosynthetic pathway of galactosyl-containing complex oligosaccharides were more highly expressed in RA-treated THP-1 cells, including B4GALT5, ST3GAL3, ST6GALNAC5, and GALNAC4S-6ST. Thus, the results of this study identify RA as a significant regulator of GALM and other galactose-related genes in myeloid-monocytic cells, which could affect energy utilization and synthesis of cell-surface glycoproteins or glycolipids involved in cell motility, adhesion, and/or functional properties.  相似文献   

17.
The p2 progenitor domain in the ventral spinal cord gives rise to two interneuron subtypes: V2a and V2b. Delta-Notch-mediated cell-cell interactions between postmitotic immature neurons have been implicated in the segregation of neuron subtypes. However, lineage relationships between V2a and V2b neurons have not been reported. We address this issue using Tg[vsx1:GFP] zebrafish, a model system in which high GFP expression is initiated near the final stage of p2 progenitors. Cell fates were followed in progeny using time-lapse microscopy. Results indicate that the vast majority, if not all, of GFP-labeled p2 progenitors divide once to produce V2a/V2b neuron pairs, indicating that V2a and V2b neurons are generated by the asymmetric division of pair-producing progenitor cells. Together with evidence that Notch signaling is involved in the cell fate specification process, our results strongly suggest that Delta-Notch interactions between sister cells play a crucial role in the final outcome of these asymmetric divisions. This mechanism for determining cell fate is similar to asymmetric divisions that occur during Drosophila neurogenesis, where ganglion mother cells divide once to produce distinct neurons. However, unlike in Drosophila, the divisional axes of p2 progenitors in zebrafish were not fixed. We report that the terminal division of pair-producing progenitor cells in vertebrate neurogenesis can reproducibly produce two distinct neurons through a mechanism that may not depend on the orientation of the division axis.  相似文献   

18.
We report that the zebrafish mutation soulless, in which the development of locus coeruleus (LC) noradrenergic (NA) neurons failed to occur, disrupts the homeodomain protein Phox2a. Phox2a is not only necessary but also sufficient to induce Phox2b+ dopamine-beta-hydroxylase+ and tyrosine hydroxylase+ NA neurons in ectopic locations. Phox2a is first detected in LC progenitors in the dorsal anterior hindbrain, and its expression there is dependent on FGF8 from the mid/hindbrain boundary and on optimal concentrations of BMP signal from the epidermal ectoderm/future dorsal neural plate junction. These findings suggest that Phox2a coordinates the specification of LC in part through the induction of Phox2b and in response to cooperating signals that operate along the mediolateral and anteroposterior axes of the neural plate.  相似文献   

19.
Neural crest progenitor cells are the main contributors to craniofacial cartilage and connective tissue of the vertebrate head. These progenitor cells also give rise to the pigment, neuronal and glial cell lineages. To study the molecular basis of neural crest differentiation, we have cloned the gene disrupted in the mont blanc (mob(m610)) mutation, which affects all neural crest derivatives. Using a positional candidate cloning approach we identified an A to G transition within the 3' splice site of the sixth intron of the tfap2a gene that abolishes the last exon encoding the crucial protein dimerization and DNA-binding domains. Neural crest induction and specification are not hindered in mob(m610) mutant embryos, as revealed by normal expression of early neural crest specific genes such as snail2, foxd3 and sox10. In addition, the initial stages of cranial neural crest migration appear undisturbed, while at a later phase the craniofacial primordia in pharyngeal arches two to seven fail to express their typical set of genes (sox9a, wnt5a, dlx2, hoxa2/b2). In mob(m610) mutant embryos, the cell number of neuronal and glial derivatives of neural crest is greatly reduced, suggesting that tfap2a is required for their normal development. By tracing the fate of neural crest progenitors in live mont blanc (mob(m610)) embryos, we found that at 24 hpf neural crest cells migrate normally in the first pharyngeal arch while the preotic and postotic neural crest cells begin migration but fail to descend to the pharyngeal region of the head. TUNEL assay and Acridine Orange staining revealed that in the absence of tfap2a a subset of neural crest cells are unable to undergo terminal differentiation and die by apoptosis. Furthermore, surviving neural crest cells in tfap2a/mob(m610) mutant embryos proliferate normally and later differentiate to individual derivatives. Our results indicate that tfap2a is essential to turn on the normal developmental program in arches 2-7 and in trunk neural crest. Thus, tfap2a does not appear to be involved in early specification and cell proliferation of neural crest, but it is a key regulator of an early differentiation phase and is required for cell survival in neural crest derived cell lineages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号