首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have prepared DNA fragments containing the sequences A15CGT15, T15CGA15 and T(AT)8CG(AT)15 cloned within the SmaI site of the pUC19 polylinker. These have been used as substrates in footprinting experiments with DNase I and diethylpyrocarbonate probing the effects of echinomycin, binding to the central CG, on the structure of the surrounding sequences. No clear DNase I footprints are seen with T15CGA15 though alterations in the nuclease susceptibility of surrounding regions suggest that the ligand is binding, albeit weakly at this site. All the other fragments show the expected footprints around the CG site. Regions of An and Tn are rendered much more reactive to DNase I and adenines on the 3'-side of the CG become hyperreactive to diethylpyrocarbonate. Regions of alternating AT show unusual changes in the presence of the ligand. At low concentrations (5 microM) cleavage of TpA is enhanced, whereas at higher concentrations a cleavage pattern with a four base pair repeat is evident. A similar pattern is seen with micrococcal nuclease. Modification by diethylpyrocarbonate is strongest at alternate adenines which are staggered in the 5'-direction across the two strands. We interpret these changes by suggesting secondary drug binding within regions of alternating AT, possibly to the dinucleotide ApT. DNase I footprinting experiments performed at 4 degrees C revealed neither enhancements nor footprints for flanking regions of homopolymeric A and T suggesting that the conformational changes are necessary consequence of drug binding.  相似文献   

2.
DNA fragments containing the sequence CG(AT)nCG have been used in footprinting experiments to assess the effect of echinomycin, which binds to CG steps, on the structure of the central AT region. DNAase I normally cuts ApT much better than TpA; in the presence of the drug this preference is retained but cleavage at TpA is enhanced. Changes in cleavage by micrococcal nuclease have also been observed. Echinomycin renders alternate adenines hyperreactive to diethylpyrocarbonate. The results suggest that echinomycin induces structural changes in regions surrounding its binding site and that these can be cooperatively propagated over several turns of the DNA helix.  相似文献   

3.
C M Low  H R Drew    M J Waring 《Nucleic acids research》1984,12(12):4865-4879
The technique of DNAase I footprinting has been used to investigate preferred binding sites for echinomycin on a 160-base-pair DNA fragment from E. coli containing the tyr T promoter sequence. Six binding sites have been precisely located in the sequence; a seventh has been partially identified. The minimum site-size is six base pairs. All the binding sites contain the dinucleotide sequence CpG but no other regularities can be discerned. When the protected regions on each complementary strand are compared it is evident that they are staggered by 2-3 base-pairs towards the 3' end at each site. Footprinting with DNAase II reports a similar, though less precise, pattern of protection. Cutting by both enzymes is markedly enhanced at AT-rich regions flanking the antibiotic-binding sites. This increased susceptibility to nuclease attack can be attributed to an altered helix conformation in the vicinity of the bis-intercalated echinomycin molecule. It seems that certain sequences, mainly runs of A or runs of T, switch from a nuclease-resistant to a nuclease-sensitive form when echinomycin binds nearby.  相似文献   

4.
The effect of actinomycin on the structure of DNA fragments containing the sequences (AT)5GC(AT)5, (TA)5GC(TA)5, A9GCT9, and T9GCA9, cloned into the SmaI site of pUC19, has been studied by footprinting analysis using a variety of probes known to be sensitive to DNA structure. In each case clear footprints are found around the central GC sites. DNase I cleavage of fragments containing alternating AT shows much greater cutting at ApT than TpA; in the presence of actinomycin, although this preference is retained, there is a large increase in the cutting efficiency at the closest TpA steps. DNase I cleavage in homopolymeric regions of A and T, which is normally very poor, is greatly enhanced by drug binding. With T9GCA9 the enhancements are propagated in both directions, whereas changes are only found to the 5'-side of the GC site in A9GCT9. The results are confirmed by similar experiments with micrococcal nuclease and DNase II. Small increases in sensitivity to diethylpyrocarbonate are found at adenines proximal to GC. Experiments performed at 4 degrees C suggest that conformational changes are a necessary consequence of drug binding.  相似文献   

5.
DNase I footprinting has been used to examine the sequence selective binding of ditrisarubicin B, novel anthracycline antibiotic, to DNA. At 37°C no footprinting pattern is observed, the drug protects all sites from enzymic cleavage with equal efficiency. At 4°C a footprinting pattern is induced with low drug concentrations which is different from that produced by daunomycin. The best binding sites contain the dinucleotide step GpT (ApC) and are located in regions of alternating purines and pyrimidines.  相似文献   

6.
Actinomycin D has long been known to bind selectively to the dinucleotide step GpC. We have investigated its ability to bind to other non-canonical sequences using a series of synthetic DNA fragments. DNase I footprinting experiments reveal that actinomycin can also bind well to GG (CC). Binding to this sequence and the canonical GC site is potentiated by flanking regions of (GT)n.(AC)n. Weaker but specific binding to GT and AC is also evident and appears to be cooperative.  相似文献   

7.
C M Low  R K Olsen  M J Waring 《FEBS letters》1984,176(2):414-420
Six or seven triostin-binding sites have been identified in a 160-base-pair DNA restriction fragment containing the tyr T promoter sequence. Each is centred round a CpG step, and the minimum binding site-size appears to be six base pairs. The sites are practically the same as those reported for echinomycin by DNase I digestion. Only two sites are protected by binding of TANDEM, the des-N-tetramethyl analogue of triostin A; they are centred around the sequences ATA or TAT.  相似文献   

8.
K Waterloh  R K Olsen  K R Fox 《Biochemistry》1992,31(27):6246-6253
The binding of [N-MeCys3,N-MeCys7]TANDEM has been examined by DNase I footprinting and diethyl pyrocarbonate modification of several synthetic DNA fragments containing AT-rich regions. DNase I footprinting reveals that at low concentrations the ligand binds preferentially to the center of (AT)n regions. A fragment containing the tetranucleotide AATT was unaffected by the ligand. Diethyl pyrocarbonate modification of several fragments containing blocks of (AT)n revealed a pattern in which alternate adenines were rendered more reactive in the presence of the ligand. These reactive adenines were staggered across the two DNA strands in the 3'-direction, consistent with ligand binding to the dinucleotide TpA. In sequences of the type (TAA)n.(TTA)n, binding of [N-MeCys3,N-MeCys7]TANDEM resulted in strong modification of the second adenine in the sequence TAA, i.e., the base on the 3'-side of the ligand binding site. Data for binding to (AT)n are best explained by suggesting that the adenines sandwiched between the quinoxaline chromophores are rendered most reactive to diethyl pyrocarbonate.  相似文献   

9.
The interaction of echinomycin with a kinetoplast DNA fragment which contains phased runs of adenine residues has been examined by various footprinting techniques. DNAase I footprinting confirms that all drug-binding sites contain the dinucleotide CpG. However, not all such sequences are protected. Three sites, each of which is located between two adenine tracks in the sequence GCGA, are not protected from DNAase I attack. Enhanced cleavage by DNAase I, DNAase II and micrococcal nuclease is observed in regions surrounding drug-binding sites. The results suggest that echinomycin alters the conformation of the AT tracks, making them more like an average DNA structure. Echinomycin renders adenine residues in the sequence CGA hyper-reactive to diethyl pyrocarbonate.  相似文献   

10.
The 2-amino group of guanine is believed to be a critical determinant of potential DNA binding sites for echinomycin and related quinoxaline antibiotics. In order to probe its importance directly we have studied the interaction between echinomycin and DNA species in which guanine N(2) is deleted by virtue of substitution of inosine for guanosine residues. The polymerase chain reaction was used to prepare inosine-substituted DNA. Binding of echinomycin, assessed by DNAse I footprinting, was practically abolished by incorporation of inosine into one or both strands of DNA. We conclude that both the purines in the preferred CpG binding site need to bear a 2-amino group to interact with echinomycin.  相似文献   

11.
Sequence-specific binding of luzopeptin to DNA.   总被引:3,自引:2,他引:1       下载免费PDF全文
We have examined the binding of luzopeptin, an antitumor antibiotic, to five DNA fragments of varying base composition. The drug forms a tight, possibly covalent, complex with the DNA causing a reduction in mobility on nondenaturing polyacrylamide gels and some smearing of the bands consistent with intramolecular cross-linking of DNA duplexes. DNAase I and micrococcal nuclease footprinting experiments suggest that the drug binds best to regions containing alternating A and T residues, although no consensus di- or trinucleotide sequence emerges. Binding to other sites is not excluded and at moderate ligand concentrations the DNA is almost totally protected from enzyme attack. Ligand-induced enhancement of DNAase I cleavage is observed at both AT and GC-rich regions. The sequence selectivity and characteristics of luzopeptin binding are quite different from those of echinomycin, a bifunctional intercalator of related structure.  相似文献   

12.
K R Fox  M J Waring 《Biochemistry》1986,25(15):4349-4356
Four DNA restriction fragments, designated tyrT, pTyr2, pUC13, and Xbs1, have been used as substrates for footprinting studies with DNase I in the presence of the anthracycline antibiotic nogalamycin. With each fragment a distinct pattern of antibiotic-protected binding sites is observed, but no concensus sequence emerges from the data. All sites are located in regions of alternating purine-pyrimidine sequence, most commonly associated with the dinucleotide steps TpG (CpA) and GpT (ApC), suggesting that the preferred binding sites may contain all four nucleotides and/or that peculiarities of the dynamics of DNA conformation at alternating sequences may be critical for nogalamycin binding. Some concentration dependence of footprinting patterns is evident, in contrast to previous studies with a variety of sequence-specific ligands. Enhanced susceptibility to attack by DNase I is commonly observed at sequences flanking strong antibiotic-binding sites. Nogalamycin selectively inhibits cleavage of DNA at certain guanine-containing sequences by the G-specific photosensitized reaction with methylene blue. Comparison of these effects with its action on the G-specific reaction with dimethyl sulfate suggests that the amino sugar moiety of nogalamycin may be preferentially located in the minor helical groove at some binding sites but in the major groove at others.  相似文献   

13.
Five human clones containing genomic regions of polydA have been isolated by their ability to form intermolecular triple helices with agarose cross-linked polyU. All of these clones contain Alu repetitive DNA sequences. End-labelled DNA fragments containing these sequences have been successfully reconstituted onto nucleosome core particles by salt exchange. The structure of these has been examined by digesting with DNase I, hydroxyl radicals or diethylpyrocarbonate. DNase I cleavage of the polydA tracts is poor in the free DNA but is markedly enhanced at certain positions when complexed with nucleosome cores. Phased digestion patterns are observed which continue through the (A)n blocks and reveal an average helical periodicity of about 10 base pairs. The distance between adjacent maxima varies between 8-12 base pairs, suggesting that the exact helical repeat is not necessarily constant. One fragment containing the sequence (TA)11T34 reveals a 12 base pair repeat within the (AT)n region. A pUC19 polylinker fragment containing a block of A69.T69 cloned into the Smal site could also be reconstituted onto nucleosome cores and reveals the same phased DNaseI digestion pattern. The DNase I cleavage pattern is not identical at each of the maxima, suggesting that the structural distortions imposed by the core particles are not constant along the DNA.  相似文献   

14.
Leslie KD  Fox KR 《Biochemistry》2002,41(10):3484-3497
We have examined the interaction of Hoechst 33258 and echinomycin with nucleosomal DNA fragments which contain isolated ligand binding sites. A 145 base pair fragment was prepared on the basis of the sequence of tyrT DNA, which contained no CpG or (A/T)(4) binding sites for these ligands. Isolated binding sites were introduced into this fragment at discrete locations where the minor groove is known to face toward or away from the protein core when reconstituted onto nucleosome core particles. The interaction of ligands with target sites on these nucleosomal DNA fragments was assessed by DNase I footprinting. We find that Hoechst 33258 can bind to single nucleosomal sites which face both toward and away from the protein core, without affecting the nucleosome structure. Hoechst binding is also observed on nucleosomal fragments which contain two or more drug binding sites, though in these cases the footprints are accompanied by the presence of new cleavage products in positions which suggest that the ligand has caused a proportion of the DNA molecules to adopt a new rotational positioning on the protein surface. Hoechst 33258 does not affect nucleosome reconstitution with any of these fragments. In contrast, the bifunctional intercalating antibiotic echinomycin is not able to bind to single nucleosomal CpG sites. Echinomycin footprints are observed on nucleosomal fragments containing two or more CpG sites, but there are no changes in the cleavage patterns in the remainder of the fragment. Echinomycin abolishes nucleosome reconstitution when included in the reconstitution mixture.  相似文献   

15.
B M Cons  K R Fox 《Biochemistry》1991,30(25):6314-6321
Regions of An.Tn, (GA)n.(TC)n, and (GT)n.(AC)n have been cloned into the SmaI (CCC/GGG) site of plasmid pUC19. HindIII-EcoRI restriction fragments containing these inserts have been used as substrates for footprinting experiments using DNase I, DNase II, and micrococcal nuclease as probes. These present good mithramycin binding sites (GGG) flanking repetitive regions to which the drug does not bind. In each case, mithramycin footprints are observed at the CCC/GGG sites, which are not affected by the nature of the surrounding sequences. Some weaker binding is detected at TCGA and ACCA sites and at regions of alternating GA. No binding is found to regions of alternating GT. An.Tn inserts (n = 23 or 69) are normally resistant to cleavage by all these probes; in the presence of mithramycin, a dramatic increase in DNase I cleavage is observed throughout the entire insert and is indicative of an alteration in DNA structure. Similar changes are seen with DNase II and micrococcal nuclease. These changes cannot be explained by invoking changes in the ratio of free substrate to cleavage agent. In contrast, cleavage of (GA)n.(CT)n and (GT)n.(AC)n inserts is not affected by drug binding. The results are consistent with a model in which mithramycin causes dramatic changes in the width of the DNA minor groove, generating a structure which has some properties of A-DNA, and suggest that this can be propagated into surrounding DNA regions in a sequence-dependent manner. The structural alterations with An.Tn are highly cooperative and can be transmitted over at least three turns of the DNA helix.  相似文献   

16.
D E Gilbert  J Feigon 《Biochemistry》1991,30(9):2483-2494
The complexes formed between the cyclic octadepsipeptide antibiotic echinomycin and the two DNA octamers [d(ACGTACGT)]2 and [d(TCGATCGA)]2 have been investigated by using one- and two-dimensional proton NMR spectroscopy techniques. The results obtained for the two complexes are compared to each other, to the crystal structures of related DNA-echinomycin complexes, and to enzymatic and chemical footprinting results. In the saturated complexes, two echinomycin molecules bind to each octamer by bisintercalation of the quinoxaline moieties on either side of each CpG step. Binding of echinomycin to the octamer [d(ACGTACGT)]2 is cooperative so that only the two-drug complex is observed at lower drug-DNA ratios, but binding to [d(TCGATCGA)]2 is not cooperative. At low temperatures, both the internal and terminal A.T base pairs adjacent to the binding site in the [d(ACGTACGT)]2-2 echinomycin complex are Hoogsteen base paired (Gilbert et al., 1989) as observed in related crystal structures. However, as the temperature is raised, the internal A.T Hoogsteen base pairs are destabilized and are observed to be exchanging between the Hoogsteen base-paired and an open (or Watson-Crick base-paired) state. In contrast, in the [d(TCGATCGA)]2-2 echinomycin complex, no A.T Hoogsteen base pairs are observed, the internal A.T base pairs appear to be stabilized by drug binding, and the structure of the complex does not change significantly from 0 to 45 degrees C. Thus, the structure and stability of the DNA in echinomycin-DNA complexes depends on the sequence at and adjacent to the binding site. While we conclude that no single structural change in the DNA can explain all of the footprinting results, unwinding of the DNA helix in the drug-DNA complexes appears to be an important factor while Hoogsteen base pair formation does not.  相似文献   

17.
The sequence selectivity associated with binding to DNA of three alkaloids belonging to the benzophenanthridine family has been analysed by DNase I footprinting, and the results were compared with those obtained from an analysis of the behaviour of the standard intercalator, ethidium bromide. Like the ethidium, the benzophenanthridine compounds appear to bind best to regions of mixed nucleotide sequence, especially those containing alternating purines and pyrimidines, although there are some notable differences in behaviour. There is also a marked lack of binding to sequences such as (AT)n, where n greater than or equal to 3. The binding to DNA of the benzophenanthridines is specifically related to the hydrogen ion concentration of the medium, in that the DNase I footprints are considerably enhanced when the reaction is performed at a pH below 7.0. We discuss these results in terms of a greater preponderance of the intercalating species being present at lower pH.  相似文献   

18.
Bidirectional transcription footprinting of DNA binding ligands   总被引:1,自引:0,他引:1  
R J White  D R Phillips 《Biochemistry》1989,28(15):6259-6269
  相似文献   

19.
In the course of a program aimed at discovering novel DNA-targeted antiparasitic drugs, the phenylfuran-benzimidazole unfused aromatic dication DB293 was identified as the first diamidine capable of forming stacked dimers in the DNA minor groove of GC-containing sequences. Its preferred binding sequence encompasses the tetranucleotide 5'-ATGA.5'-TCAT to which DB293 binds tightly with a strong positive cooperativity. Here we have investigated the influence of the DNA sequence on drug binding using two complementary technical approaches: surface plasmon resonance and DNase I footprinting. The central dinucleotide of the primary ATGA motif was systematically varied to represent all of the eight possible combinations (AXGA and ATYA, where X or Y = A, T, G, or C). Binding affinities for each site were precisely measured by SPR, and the extent of cooperative drug binding was also determined. The sequence recognition process was found to be extremely dependent on the nature of the central dinucleotide pair. Modification of the central TG step decreases binding affinity by a factor varying from 2 to over 500 depending on the base substitution. However, the diminished binding affinity does not affect the unique binding mode. In nearly all cases, the SPR titrations revealed a positive cooperativity in complex formation which reflects the ease of the dication to form stacked dimeric motifs in the DNA minor groove. DNase I footprinting served to identify additional binding sites for DB293 in the context of long DNA sequences offering a large variety of randomly distributed or specifically designed sites. The ATGA motif provided the best receptor for the drug, but lower affinity sequences were also identified. The design of two DNA fragments composed of various targeted tetranucleotide binding sites separated by an "insulator" (nonbinding) sequence allowed us to delineate further the influence of DNA sequence on drug binding and to identify a novel high-affinity site: 5'-ACAA.5'-TTGT. Collectively, the SPR and footprinting results show that the consensus sequence 5'-(A/T)-TG-(A/T) represents the optimal site for cooperative dimerization of the heterocyclic diamidine DB293.  相似文献   

20.
Map of chartreusin and elsamicin binding sites on DNA   总被引:1,自引:0,他引:1  
X Salas  J Portugal 《FEBS letters》1991,292(1-2):223-228
Three DNA restriction fragments designated tyrT, 102-mer and 70-mer, have been used as substrates for footprinting studies using DNase I in the presence of the structurally similar antibiotics chartreusin and elsamicin A. The sequence-selective binding sites of the antibiotics can be mapped in regions which are rich in guanine + cytosine. Chartreusin and elsamicin appear to recognize and bind preferentially to sequences containing a CpG step. Regions containing a TpG step also seem to be a good binding site. The binding of elsamicin to these sites appears to be more concentration-dependent. A comparative analysis is performed of the sizes and locations of the different binding sites, aimed to infer whether the different biological effects of chartreusin and elsamicin A can be correlated to differences in their sequence-selective binding to DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号