首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A conceptually new technique for fast DNA detection has been developed. Here, we report a fast and sensitive online fluorescence resonance energy transfer (FRET) detection technique for label-free target DNA. This method is based on changes in the FRET signal resulting from the sequence-specific hybridization between two fluorescently labelled nucleic acid probes and target DNA in a PDMS microfluidic channel. Confocal laser-induced microscopy has been used for the detection of fluorescence signal changes. In the present study, DNA hybridizations could be detected without PCR amplification because the sensitivity of confocal laser-induced fluorescence detection is very high. Two probe DNA oligomers (5'-CTGAT TAGAG AGAGAA-TAMRA-3' and 5'-TET-ATGTC TGAGC TGCAGG-3') and target DNA (3'-GACTA ATCTC TCTCT TACAG GCACT ACAGA CTCGA CGTCC-5') were introduced into the channel by a microsyringe pump, and they were efficiently mixed by passing through the alligator teeth-shaped PDMS microfluidic channel. Here, the nucleic acid probes were terminally labelled with the fluorescent dyes, tetrafluororescein (TET) and tetramethyl-6-carboxyrhodamine (TAMRA), respectively. According to our confocal fluorescence measurements, the limit of detection of the target DNA is estimated to be 1.0 x 10(-6) to 1.0 x 10(-7)M. Our result demonstrates that this analytical technique is a promising diagnostic tool that can be applied to the real-time analysis of DNA targets in the solution phase.  相似文献   

2.
DNA was assayed in a homogeneous format using DNA probes containing hybridization-sensitive labels. The DNA probes were prepared from complementary DNA strands in which one strand was covalently labeled on the 5'-terminus with fluorescein and the complementary strand was covalently labeled on the 3'-terminus with a quencher of fluorescein emission, either pyrenebutyrate or sulforhodamine 101. Probes prepared in this manner were able to detect unlabeled target DNA by competitive hybridization producing fluorescence signals which increased with increasing target DNA concentration. A single pair of complementary probes detected target DNA at a concentration of approximately 0.1 nM in 10 min or about 10 pM in 20-30 min. Detection of a 4 pM concentration of target DNA was demonstrated in 6 h using multiple probe pairs. The major limiting factors were background fluorescence and hybridization rates. Continuous monitoring of fluorescence during competitive hybridization allowed correction for variable sample backgrounds at probe concentrations down to 20 pM; however, the time required for complete hybridization increased to greater than 1 h at probe concentrations below 0.1 nM. A promising application for this technology is the rapid detection of amplified polynucleotides. Detection of 96,000 target DNA molecules in a 50-microliters sample was demonstrated following in vitro amplification using the polymerase chain reaction technique.  相似文献   

3.
A non-competitive immunoassay based on micellar electrokinetic capillary chromatography (MECC) with laser-induced fluorescence (LIF) detection has been developed for the determination of alpha-fetoprotein (AFP). The anti-AFP antibody was labeled with fluorescein isothiocyanate (FITC) and the product was used as a fluorescent tracer, then AFP was mixed with the labeled antibody. After incubation, the immune AFP-antibody complex was separated from labeled free antibody by MECC. The parameters affecting separation such as the concentration of sodium dodecyl sulfate (SDS), the buffer pH and separation voltage were investigated and the following conditions were selected: 20 mM tetraborate containing 100 mM SDS at pH 9.50, and 20 kV separation voltage. The detection limit of this assay was 0.1 ng/ml with a linear range spanning two orders of magnitude. This method was applied to determine AFP in human serum.  相似文献   

4.
We present a simple one-dimensional electrophoretic map of the expressed proteins in a Caenorhabditis elegans embryo. The embryo was taken from an adult nematode, injected into a 50-μm I.D. capillary, and lysed. The proteins were fluorescently labeled and then separated by capillary electrophoresis and detected by laser-induced fluorescence. Over 20 components were resolved in the 22-min separation. The dynamic range was outstanding for this separation, noise in the baseline was less than 0.01% the amplitude of the largest component.  相似文献   

5.
A single-molecule detection setup based on total internal reflection fluorescence (TIRF) microscopy has been used to investigate association and dissociation kinetics of unlabeled 30mer DNA strands. Single-molecule sensitivity was accomplished by letting unlabeled DNA target strands mediate the binding of DNA-modified and fluorescently labeled liposomes to a DNA-modified surface. The liposomes, acting as signal enhancer elements, enabled the number of binding events as well as the residence time for high affinity binders (Kd < 1 nM, koff < 0.01 s−1) to be collected under equilibrium conditions at low pM concentrations. The mismatch discrimination obtained from the residence time data was shown to be concentration and temperature independent in intervals of 1–100 pM and 23–46°C, respectively. This suggests the method as a robust means for detection of point mutations at low target concentrations in, for example, single nucleotide polymorphism (SNP) analysis.  相似文献   

6.
We report the use of surface plasmon-coupled emission (SPCE) as an analytical tool to study the photophysics of surface-adsorbed fluorescently labeled proteins. The study uses plasma etching of PMMA surface followed by deposition of poly(diallyldimethylammonium chloride) (PDDA) for surface protein detection. PDDA increases the overall amount of the captured protein and also promotes dye aggregation. The photon-sorting properties of the SPCE process allows for wavelength separation of the individual components from the protein–dye aggregates. This has been exploited to study the fluorescence emissions from casein labeled with fluorescein isothiocyanate and concanavalin A labeled with tetramethylrhodamine. Based on the current findings, the proteins can be used to measure background fluorescence or to monitor the microenvironments in fluoroimmunoassays on SPCE substrates.  相似文献   

7.
Single molecules of fluorescently labeled nucleotides were detected during the cleavage of individual DNA fragments by a processive exonuclease. In these experiments, multiple (10-100) strands of DNA with tetramethyl rhodamine labeled dUMP (TMR-dUMP) incorporated into the sequence were anchored in flow upstream of the detection region of an ultra sensitive flow cytometer. A dilute solution of Exonuclease I passed over the microspheres. When an exonuclease attached to a strand, processive digestion of that strand began. The liberated, labeled bases flowed through the detection region and were detected at high efficiency at the single-molecule level by laser-induced fluorescence. The digestion of a single strand of DNA by a single exonuclease was discernable in these experiments. This result demonstrates the feasibility of single-molecule DNA sequencing. In addition, these experiments point to a new and practical means of arriving at a consensus sequence by individually reading out identical sequences on multiple fragments.  相似文献   

8.
Single nucleotide incorporation assays have been used to probe the kinetic parameters of many DNA and RNA polymerases. Traditionally, oligonucleotide primers are 5'-(32)P labeled using T4 kinase and annealed to a complementary template with a 5' overhang. To quantify the reaction kinetics, the products of the primer extension reactions are usually separated using denaturing polyacrylamide gel electrophoresis and quantified using a phosphorimager or other method to measure radioactivity. We have developed a method using a 5' fluorescently labeled oligonucleotide to examine the kinetics of single nucleotide incorporation catalyzed by recombinant human mitochondrial polymerase gamma (Pol gamma) holoenzyme. Using laser-induced fluorescence detection in the P/ACE MDQ instrument, primers 5' labeled with fluorescent probes such as 6-carboxyfluorescein can be rapidly separated and quantified. However, we also show that only select probes can be used, presumably due to unfavorable interactions between Pol gamma and certain 5' labels.  相似文献   

9.
The principle of an optical molecular sensor using ion-exchanged buried planar waveguides in glass has been demonstrated. We have shown both theoretically and experimentally that the intensity of the peak evanescent fluorescence can be increased by several orders of magnitude with the use of an index-matching material. The method of differential measurement has been used to improve the differentiation between specific and non-specific binding. We used h-IgG (human immunoglobulin G) as the immobilized antibody on the surface of the waveguide and protein A-FITC (fluorescein isothiocyanate) as the fluorescently labelled antigen or anti-antibody to be detected, and have shown that a concentration of protein A as low as 24 nM can easily be detected.  相似文献   

10.
Johnson JM  Ha T  Chu S  Boxer SG 《Biophysical journal》2002,83(6):3371-3379
We have developed a single vesicle assay to study the mechanisms of supported bilayer formation. Fluorescently labeled, unilamellar vesicles (30-100 nm diameter) were first adsorbed to a quartz surface at low enough surface concentrations to visualize single vesicles. Fusion and rupture events during the bilayer formation, induced by the subsequent addition of unlabeled vesicles, were detected by measuring two-color fluorescence signals simultaneously. Lipid-conjugated dyes monitored the membrane fusion while encapsulated dyes reported on the vesicle rupture. Four dominant pathways were observed, each exhibiting characteristic two-color fluorescence signatures: 1) primary fusion, in which an unlabeled vesicle fuses with a labeled vesicle on the surface, is signified by the dequenching of the lipid-conjugated dyes followed by rupture and final merging into the bilayer; 2) simultaneous fusion and rupture, in which a labeled vesicle on the surface ruptures simultaneously upon fusion with an unlabeled vesicle; 3) no dequenching, in which loss of fluorescence signal from both dyes occur simultaneously with the final merger into the bilayer; and 4) isolated rupture (pre-ruptured vesicles), in which a labeled vesicle on the surface spontaneously undergoes content loss, a process that occurs with high efficiency in the presence of a high concentration of Texas Red-labeled lipids. Vesicles that have undergone content loss appear to be more fusogenic than intact vesicles.  相似文献   

11.
Single molecule detection of target molecules specifically bound by paired fluorescently labeled probes has shown great potential for sensitive quantitation of biomolecules. To date, no reports have rigorously evaluated the analytical capabilities of a single molecule detection platform employing this dual-probe approach or the performance of its data analysis methodology. In this paper, we describe a rapid, automated, and sensitive multicolor single molecule detection apparatus and a novel extension of coincident event counting based on detection of fluorescent probes. The approach estimates the number of dual-labeled molecules of interest from the total number of coincident fluorescent events observed by correcting for unbound probes that randomly pass through the interrogation zone simultaneously. Event counting was evaluated on three combinations of distinct fluorescence channels and was demonstrated to outperform conventional spatial cross-correlation in generating a wider linear dynamic response to target molecules. Furthermore, this approach succeeded in detecting subpicomolar concentrations of a model RNA target to which fluorescently labeled oligonucleotide probes were hybridized in a complex background of RNA. These results illustrate that the fluorescent event counting approach described represents a general tool for rapid sensitive quantitative analysis of any sample analyte, including nucleic acids and proteins, for which pairs of specific probes can be developed.  相似文献   

12.
Post-PCR fragment analysis was conducted using our single photon detection-based DNA sequencing instrument in order to substantially enhance the detection of nucleic biomarkers. Telomerase Repeat Amplification Protocol assay was used as a model for real-time PCR-based amplification and detection of DNA. Using TRAPeze XL kit, telomerase-extended DNA fragments were obtained in extracts of serial 10-fold dilutions of telomerase-positive cells, then amplified and detected during 40-cycle real-time PCR. Subsequently, characteristic 6-base DNA ladder patterns were revealed in the post-PCR samples with capillary electrophoresis (CE). In our CE instrument, fluorescently labeled DNA fragments separate in a single-capillary module and are illuminated by a fiberized Ar-ion laser. The laser-induced fluorescence (LIF) is filtered and detected by the fiberized single photon detector (SPD). To assess the sensitivity of our instrument, we performed PCR at fewer cycles (29 and 25), so that the PCR machine could detect amplification only in the most concentrated samples, and then examined samples with CE. Indeed, PCR has detected amplification in samples with minimum 10(4) cells at 29 cycles and over 10(5) cells at 25 cycles. In contrast, the SPD-based CE-LIF has revealed 6-base repeats in samples with as low as 10(2) cells after 29 cycles and 10(3) cells after 25 cycles. Thus, we have demonstrated 100- to 1000-fold increase in the sensitivity of biomarker detection over real-time PCR, making our approach especially suitable for analysis of clinical samples where abundant PCR inhibitors often cause false-negative results.  相似文献   

13.
Rapid DNA sequencing based upon single molecule detection   总被引:1,自引:0,他引:1  
We are developing a laser-based technique for the rapid sequencing of 40-kb or larger fragments of DNA at a rate of 100 to 1000 bases per second. The approach relies on fluorescent labeling of the bases in a single fragment of DNA, attachment of this labeled DNA fragment to a support, movement of the supported DNA fragment into a flowing sample stream, and detection of individual fluorescently labeled bases as they are cleaved from the DNA fragment by an exonuclease. The ability to sequence large fragments of DNA will significantly reduce the amount of subcloning and the number of overlapping sequences required to assemble megabase segments of sequence information.  相似文献   

14.
Molecules of the lectin concanavalin A have been labeled separately with the fluorescein and rhodamine chromophores and jointly bound to the surface of transformed Friend erythroleukemia cells. The two dyes constitute an ideal donor-acceptor pair for fluorescence resonance energy transfer thereby permitting the determination of the proximity relationships between bound ligand molecules and the corresponding surface receptors. The transfer efficiency at saturation (about 57%) was measured in a multiparameter flow system using laser excitation at 488 nm and detection of fluorescein and rhodamine emission intensities as well as the emission anisotropy of the rhodamine fluorescence for each cell. The degree of energy transfer was estimated from the quenching of donor emission, the sensitization of acceptor emission, and the depolarization of acceptor fluorescence. The system has been modeled according to a formalism developed by Gennis and Cantor (Biochemistry 11: 2509, 1972). We estimate the separation between the surfaces of bound lectin molecules at saturation to be 0-40 A, a range possibly characteristic for micropatches induced by ligand binding.  相似文献   

15.
A sensitive capillary electrophoretic method was developed to detect the presence of alpha-tubulin, a microtubular cytoskeletal component, in isolated nuclear preparations. These preparations are treated with anti-alpha-tubulin primary mouse antibodies and then stained with a fluorescently labeled anti-mouse IgG antibody. The stained preparation is then analyzed by capillary electrophoresis with laser-induced fluorescence detection, a technique that allows for sensitive detection of fluorescently labeled species. Using this method, it is feasible to count individual subcellular aggregates containing alpha-tubulin (SATs), estimate the number of alpha-tubulin molecules per SAT, determine the cumulative intensity of all SATs as an estimate of the relative level of alpha-tubulin in a preparation, and obtain their apparent electrophoretic mobility distribution. The method was validated by comparing SATs from untreated cells with those from colchicine-treated cells. Since colchicine is a microtubule-disrupting agent, treatment reduced the number of SATs per cell as well as the cumulative intensity of all SATs in a preparation. In contrast, the apparent electrophoretic mobility distribution was not influenced by colchicine treatment, suggesting that this parameter is not strongly dependent on the alpha-tubulin content. Given the zeptomolar sensitivity of laser-induced fluorescence detection and the widespread availability of antibodies, the approach used here represents an improvement in the detection of cytoskeletal impurities in subcellular fractions.  相似文献   

16.
We demonstrate a new method for single molecule DNA sequencing which is based upon detection and identification of single fluorescently labeled mononucleotide molecules degraded from DNA-strands in a cone shaped microcapillary with an inner diameter of 0.5 microm. The DNA was attached at an optical fiber via streptavidin/biotin binding and placed approximately 50 microm in front of the detection area inside of the microcapillary. The 5'-biotinylated 218-mer model DNA sequence used in the experiments contained 6 fluorescently labeled cytosine and uridine residues, respectively, at well defined positions. The negatively charged mononucleotide molecules were released by addition of exonuclease I and moved towards the detection area by electrokinetic forces. Adsorption of mononucleotide molecules onto the capillary walls as well as the electroosmotic (EOF) flow was prevented by the use of a 3% polyvinyl pyrrolidone (PVP) matrix containing 0.1% Tween 20. For efficient excitation of the labeled mononucleotide molecules a short-pulse diode laser emitting at 638 nm with a repetition rate of 57 MHz was applied. We report on experiments where single-stranded model DNA molecules each containing 6 fluorescently labeled dCTP and dUTP residues were attached at the tip of a fiber, transferred into the microcapillary and degraded by addition of exonuclease I solution. In one experiment, the exonucleolytic cleavage of 5-6 model DNA molecules was observed. 86 photon bursts were detected (43 Cy5-dCMP and 43 MR121-dUMP) during 400 s and identified due to the characteristic fluorescence decay time of the labels of 1.43+/-0.19 ns (Cy5-dCMP), and 2.35+/-0.29 ns (MR121-dUMP). The cleavage rate of exonuclease I on single-stranded labeled DNA molecules was determined to 3-24 Hz under the applied experimental conditions. In addition, the observed burst count rate (signals/s) indicates nonprocessive behavior of exonuclease I on single-stranded labeled DNA.  相似文献   

17.
A sensitive analytical method for gabapentin [1-(aminomethyl) cyclohexaneacetic acid] (GBP) in human plasma based on capillary electrophoretic separation and laser-induced fluorescence (LIF) detection has been developed. 6-Carboxyfluorescein succinimidyl ester (CFSE) was used for precolumn derivatization of the non-fluorescent drug in plasma. Optimal separation and detection were obtained with an electrophoretic buffer of 50mM sodium borate (pH 9.5) and an air-cooled argon-ion laser (excitation at 488 nm, emission at 520 nm). A calibration curve ranging from 0.3 to 150 microM was shown to be linear. The concentration limit of detection (LOD) in plasma was 60 nM. We also demonstrate how the detection limit can be enhanced by using acetonitrile stacking technique. With stacking, the limit of detection for gabapentin in plasma was 4.8 nM. A calibration curve ranging from 0.03 to 15 microM was shown to be linear. Both the within-day and day-to-day reproducibility and accuracy were 相似文献   

18.
Abstract

A flow cytometric, single molecule approach to DNA sequencing is described. A single, fluorescently labeled DNA fragment is suspended in a flow stream. An exonuclease is added to sequentially cleave the end base into the flow stream where it is detected and identified by laser-induced fluorescence.  相似文献   

19.
Liu KJ  Wang TH 《Biophysical journal》2008,95(6):2964-2975
Cylindrical illumination confocal spectroscopy (CICS) is a new implementation of single molecule detection that can be generically incorporated into any microfluidic system and allows highly quantitative and accurate analysis of single fluorescent molecules. Through theoretical modeling of confocal optics and Monte Carlo simulations, one-dimensional beam shaping is used to create a highly uniform sheet-like observation volume that enables the detection of digital fluorescence bursts while retaining single fluorophore sensitivity. First, we theoretically show that when used to detect single molecules in a microchannel, CICS can be optimized to obtain near 100% mass detection efficiency, <10% relative SD in burst heights, and a high signal/noise ratio. As a result, CICS is far less sensitive to thresholding artifacts than traditional single molecule detection and significantly more accurate at determining both burst rate and burst parameters. CICS is then experimentally implemented, optically characterized, and integrated into separate two microfluidic devices for the analysis of fluorescently stained plasmid DNA and single Cy5 labeled oligonucleotides. CICS rectifies the limitations of traditional confocal spectroscopy-based single molecule detection without the significant operational complications of competing technologies.  相似文献   

20.
Water‐soluble graphene oxide (GO) with a two‐dimensional layered nanostructure was synthesized and used as a quencher to construct a highly sensitive and selective fluorescence resonance energy transfer (FRET) aptasensor for sensing Immunoglobulin E (IgE). The fluorescein isothiocyanate (FITC)‐labeled aptamer could be adsorbed stably onto the surface of GO via π → π stacking interaction, which led to the occurrence of FRET from FITC to GO, and the fluorescence of FITC‐labeled aptamer was quenched by GO via energy transfer. In the presence of IgE, the fluorescence was recovered due to a higher affinity between the aptamer and IgE compared with interactions between GO and the aptamer, leading to a high signal‐to‐background ratio. The fluorescence intensity of the aptamer increased in proportion to the amount of IgE in the sample,so that IgE could be detected with a linear range of 60–225 pM and a detection limit of 22 pM. The assay was highly selective because the aptamer was unaffected by the presence of immunoglobulin G (IgG), human serum albumin (HSA) and bovine serum albumin (BSA). The practical application of the proposed aptasensor was successfully carried out for the determination of IgE in human serum samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号