首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to generate a probe for perisynaptic Schwann cells (PSCs) to investigate the emerging role of these synapse-associated glial cells in the formation and maintenance of the neuromuscular junction (NMJ). We have obtained a novel monoclonal antibody, 2A12, which labels the external surface of PSC membranes at the frog NMJ. The antibody reveals PSC fine processes or “fingers” that are interposed between nerve terminal and muscle membrane, interdigitating with bands of acetylcholine receptors. This antibody also labels PSCs at the avian neuromuscular junction and recognizes a 200 kDa protein in Torpedo electric organs. In frog muscles, axotomy induces sprouting of PSC processes beyond clusters of acetylcholine receptors and acetylcholinesterase at denervated junctional branches. PSC branches often extend across several muscle fibers. At some junctions, PSC sprouts join the tips of neighboring branches. The average length of PSC sprouts is approximately 156 µ at 3-week denervated NMJs. PSC sprouting is accompanied by a significant increase in the number of Schwann cell bodies per NMJ. Following nerve regeneration, nerve terminals reinnervate the junction along the PSC processes. In vivo observations of normal frog muscles also show PSC processes longer than nerve terminals at some junctional branches. The results suggest that nerve injury induces profuse PSC sprouting that may play a role in guiding nerve terminal regeneration at frog NMJs. In addition, antibody 2A12 reveals the fine morphology of PSCs in relation to other synaptic elements and is a useful probe in elucidating the function of these synapse-associated glial cells in vivo.  相似文献   

2.
A subsynaptic protein of Mr approximately 300 kD is a major component of Torpedo electric organ postsynaptic membranes and copurifies with the AChR and the 43-kD subsynaptic protein. mAbs against this protein react with neuromuscular synapses in higher vertebrates, but not at synapses in dystrophic muscle. The Torpedo 300-kD protein comigrates in SDS-PAGE with murine dystrophin and reacts with antibodies against murine dystrophin. The sequence of a partial cDNA isolated by screening an expression library with mAbs against the Torpedo 300-kD protein shows striking homology to mammalian dystrophin, and in particular to the b isoform of dystrophin. These results indicate that dystrophin is a component of the postsynaptic membrane at neuromuscular synapses and raise the possibility that loss of dystrophin from synapses in dystrophic muscle may have consequences that contribute to muscular dystrophy.  相似文献   

3.
The 58K protein is a peripheral membrane protein enriched in the acetylcholine receptor (AChR)-rich postsynaptic membrane of Torpedo electric organ. Because of its coexistence with AChRs in the postsynaptic membrane in both electrocytes and skeletal muscle, it is thought to be involved in the formation and maintenance of AChR clusters. Using an mAb against the 58K protein of Torpedo electric organ, we have identified a single protein band in SDS-PAGE analysis of Xenopus myotomal muscle with an apparent molecular mass of 48 kD. With this antibody, the distribution of this protein was examined in the myotomal muscle fibers with immunofluorescence techniques. We found that the 48K protein is concentrated at the myotendinous junctions (MTJs) of these muscle fibers. The MTJ is also enriched in talin and vinculin. By double labeling muscle fibers with antibodies against talin and the 48K protein, these two proteins were found to colocalize at the membrane invaginations of the MTJ. In cultured myotomal muscle cells, the 48K protein and talin are also colocalized at sites of membrane-myofibril interaction. The 48K protein is, however, not found at focal adhesion sites in nonmuscle cells, which are enriched in talin. These data suggest that the 48K protein is specifically involved in the interaction of myofibrillar actin filaments with the plasma membrane at the MTJ. In addition to the MTJ localization, 48K protein is also present at AChR clusters both in vivo and in vitro. Thus, this protein is shared by both the MTJ and the neuromuscular junction.  相似文献   

4.
Treatment of the electric organ of Torpedo marmorata with Triton X-100 in the presence of 2 mM MgCl2 generated a cytoskeletal fraction in which a 54 kDa polypeptide is a major constituent. This 54 kDa polypeptide accounted for about 8% of the cellular protein when total electric organ tissue was analyzed by two-dimensional gel electrophoresis. Immunoblotting experiments showed that this protein reacts with monoclonal antibodies to desmin, the major intermediate filament protein of avian and mammalian muscle tissue. Negative stain analysis revealed that filaments of about 10 nm diameter are the major structural elements of the electric organ cytoskeleton. In the presence of Ca2+ there was a rapid degradation of the desmin-like protein and intermediate filaments due to a Ca2+-activated protease. Some of the resulting fragments retained antigenic activity against the desmin antibodies. Immunoblotting of membrane fractions enriched in acetylcholine receptor revealed desmin in addition to some actin. A further cytoskeletal component was identified from biochemical and immunological properties as a homologue of the mammalian neurofilament L-polypeptide. Thus Torpedo expresses proteins homologous to the mammalian desmin and neurofilament L-protein which can be detected using immunological approaches. Immunofluorescence microscopy was used to map the location of various cytoskeletal proteins of the cholinergic synapse on paraffin sections and on en face preparations of membranes. Desmin staining was restricted to electrocytes and in en face preparations was seen associated with both the ventral receptor-containing membrane and with the non-innervated dorsal membrane. Antibodies to neurofilament L-protein stained only the axons and not the electrocytes. Staining for fodrin, a non-erythrocyte spectrin, resulted in submembraneous decoration of both the axons and the electrocytes. Axonal staining for neurofilaments and microtubules did not extend into the ends of the nerve terminal arborizations.  相似文献   

5.
6.
We report here the detection of a high molecular weight (greater than 400,000) cytoskeletal protein in the myogenic and neural tube derived structures of the chick embryo using a monoclonal antibody, F51H2. Immunohistological analysis reveals that this protein is concentrated in the myotome part of the somites, in the heart primordium, and in the neural tube at the end of the 2nd day of incubation. In cultured fibroblasts, the antibody appeared to decorate a filamentous network, although immunoreactivity was not detected on mesenchymal cells in situ. This network was also observed in cultured myoblasts where it has been demonstrated to be coincident to that of desmin. In colchicine-treated cells the immunoreactivity coincided with the perinuclear cap formed by the collapse of intermediate filaments (IFs). Immunoblot experiments confirmed the early distribution of F51H2 antigen in muscle and nerve tissues and its concentration in a salt-resistant IF-rich fraction of muscle tissues. In addition, there is a progressive loss of immunoreactivity during development. The immunoreactive band on sodium dodecyl sulfate gels was faint in tissues from newly hatched chickens and absent in adult tissues. It is suggested that the monoclonal antibody observed herein reacts with an embryo specific high molecular weight protein that is associated with IFs.  相似文献   

7.
We used an antibody prepared against Aplysia (mollusc) body-wall actin that specifically reacts with certain forms of cytoplasmic actin in mammalian cells to probe for the presence of actin at the neuromuscular junction. Immunocytochemical studies showed that actin or an actinlike molecule is concentrated at neuromuscular junctions of normal and denervated adult rat muscle fibers. Actin is present at the neuromuscular junctions of fibers of developing diaphragm muscles as early as embryonic day 18, well before postsynaptic folds are formed. These results suggest that cytoplasmic actin may play a role in the clustering or stabilization of acetylcholine receptors at the neuromuscular junction.  相似文献   

8.
Acetylcholine receptor-rich membranes from the electric organ of Torpedo californica are enriched in the four different subunits of the acetylcholine receptor and in two peripheral membrane proteins at 43 and 300 kD. We produced monoclonal antibodies against the 300-kD protein and have used these antibodies to determine the location of the protein, both in the electric organ and in skeletal muscle. Antibodies to the 300-kD protein were characterized by Western blots, binding assays to isolated membranes, and immunofluorescence on tissue. In Torpedo electric organ, antibodies to the 300-kD protein stain only the innervated face of the electrocytes. The 300-kD protein is on the intracellular surface of the postsynaptic membrane, since antibodies to the 300-kD protein bind more efficiently to saponin-permeabilized, right side out membranes than to intact membranes. Some antibodies against the Torpedo 300-kD protein cross-react with amphibian and mammalian neuromuscular synapses, and the cross-reacting protein is also highly concentrated on the intracellular surface of the post-synaptic membrane.  相似文献   

9.
Molecules localized to the synapse are potential contributors to processes unique to this specialized region, such as synapse formation and maintenance and synaptic transmission. We used an immunohistochemical strategy to uncover such molecules by generating antibodies that selectively stain synaptic regions and then using the antibodies to analyse their antigens. In this study, we utilized a monoclonal antibody, mAb 6D7, to identify and characterize an antigen concentrated at frog neuromuscular junctions and in peripheral nerves. In adult muscle, immunoelectron microscopy indicates that the antigen is located in the extracellular matrix around perisynaptic Schwann cells at the neuromuscular junction and in association with myelinated and nonmyelinated axons in peripheral nerves. The maintenance of the mAb 6D7 epitope is innervation-dependent but is muscle-independent; it disappears from the synaptic region within 2 weeks after denervation, but persists after muscle damage when the nerve is left intact. mAb 6D7 immunolabelling is also detected at the neuromuscular junction in developing tadpoles. Biochemical analyses of nerve extracts indicate that mAb 6D7 recognizes a glycoprotein of 127 kDa with both N- and O-linked carbohydrate moieties. Taken together, the results suggest that the antigen recognized by mAb 6D7 may be a novel component of the synaptic extracellular matrix overlying the terminal Schwann cell. The innervation-sensitivity of the epitope at the neuromuscular junction suggests a function in the interactions between nerves and Schwann cells.  相似文献   

10.
《The Journal of cell biology》1987,105(6):2457-2469
Several lines of evidence have led to the hypothesis that agrin, a protein extracted from the electric organ of Torpedo, is similar to the molecules in the synaptic cleft basal lamina at the neuromuscular junction that direct the formation of acetylcholine receptor and acetylcholinesterase aggregates on regenerating myofibers. One such finding is that monoclonal antibodies against agrin stain molecules concentrated in the synaptic cleft of neuromuscular junctions in rays. In the studies described here we made additional monoclonal antibodies against agrin and used them to extend our knowledge of agrin-like molecules at the neuromuscular junction. We found that anti-agrin antibodies intensely stained the synaptic cleft of frog and chicken as well as that of rays, that denervation of frog muscle resulted in a reduction in staining at the neuromuscular junction, and that the synaptic basal lamina in frog could be stained weeks after degeneration of all cellular components of the neuromuscular junction. We also describe anti-agrin staining in nonjunctional regions of muscle. We conclude the following: (a) agrin-like molecules are likely to be common to all vertebrate neuromuscular junctions; (b) the long-term maintenance of such molecules at the junction is nerve dependent; (c) the molecules are, indeed, a component of the synaptic basal lamina; and (d) they, like the molecules that direct the formation of receptor and esterase aggregates on regenerating myofibers, remain associated with the synaptic basal lamina after muscle damage.  相似文献   

11.
The subcellular distribution of the 43,000-D protein (43 kD or v1) and of some major cytoskeletal proteins was investigated in Torpedo marmorata electrocytes by immunocytochemical methods (immunofluorescence and immunogold at the electron microscope level) on frozen-fixed sections and homogenates of electric tissue. A monoclonal antibody directed against the 43-kD protein (Nghiêm, H. O., J. Cartaud, C. Dubreuil, C. Kordeli, G. Buttin, and J. P. Changeux, 1983, Proc. Natl. Acad. Sci. USA, 80:6403-6407), selectively labeled the postsynaptic membrane on its cytoplasmic face. Staining by anti-actin and anti-desmin antibodies appeared evenly distributed within the cytoplasm: anti-desmin antibodies being associated with the network of intermediate-sized filaments that spans the electrocyte, and anti-actin antibodies making scattered clusters throughout the cytoplasm without preferential labeling of the postsynaptic membrane. On the other hand, a dense coating by anti-actin antibodies became apparent on the postsynaptic membrane in homogenates of electric tissue pointing to the possible artifactual redistribution of a soluble cytoplasmic actin pool. Anti-fodrin and anti-ankyrin antibodies selectively labeled the non-innervated membrane of the cell. F actin was also detected in this membrane. Filamin and vinculin, two actin-binding proteins recently localized at the rat neuromuscular junction (Bloch, R. J., and Z. W. Hall, 1983, J. Cell Biol., 97:217-223), were detected in the electrocyte by the immunoblot technique but not by immunocytochemistry. The data are interpreted in terms of the functional polarity of the electrocyte and of the selective interaction of the cytoskeleton with the innervated and non-innervated domains of the plasma membrane.  相似文献   

12.
Two high-affinity mAbs were prepared against Torpedo dystrophin, an electric organ protein that is closely similar to human dystrophin, the gene product of the Duchenne muscular dystrophy locus. The antibodies were used to localize dystrophin relative to acetylcholine receptors (AChR) in electric organ and in skeletal muscle, and to show identity between Torpedo dystrophin and the previously described 270/300-kD Torpedo postsynaptic protein. Dystrophin was found in both AChR-rich and AChR-poor regions of the innervated face of the electroplaque. Immunogold experiments showed that AChR and dystrophin were closely intermingled in the AChR domains. In contrast, dystrophin appeared to be absent from many or all AChR-rich domains of the rat neuromuscular junction and of AChR clusters in cultured muscle (Xenopus laevis). It was present, however, in the immediately surrounding membrane (deep regions of the junctional folds, membrane domains interdigitating with and surrounding AChR domains within clusters). These results suggest that dystrophin may have a role in organization of AChR in electric tissue. Dystrophin is not, however, an obligatory component of AChR domains in muscle and, at the neuromuscular junction, its roles may be more related to organization of the junctional folds.  相似文献   

13.
The subcellular distribution of soluble and filamentous forms of actin in Torpedo marmorata electrocyte was investigated by cytochemical methods. Under conditions of adequate fixation of the electric tissue, two different monoclonal anti-actin antibodies revealed, in situ, actin only in the cytoplasm, never in association with the innervated and non-innervated membranes. On the other hand, a fluorescent derivative of phalloidin labeled the polymerized F-form of actin at the level of the non-innervated membrane and of the nerve terminals. However, after homogenization of the tissue, innervated membrane fragments, which still comprised cytoskeletal filaments, were systematically labeled on their cytoplasmic face. In these membrane fragments, cytoplasmic actin was never observed on the cytoskeleton. These results point to a redistribution of actin during tissue fractionation. The secondary binding of actin to the cytoplasmic surface of the postsynaptic membrane is consistent with its known in vitro interaction with the membrane-bound, 43 kd (v1) protein. Thus, at variance with the 43 kd protein, actin is not a prominent component of the mature Torpedo postsynaptic domain, and its suggested contribution to the stabilization of the AchR in the postsynaptic membrane should be reconsidered.  相似文献   

14.
A 135-kd membrane protein of intercellular adherens junctions.   总被引:41,自引:2,他引:39       下载免费PDF全文
T Volk  B Geiger 《The EMBO journal》1984,3(10):2249-2260
We report here on a new 135-kd membrane protein which is specifically associated with intercellular adherens-type junctions. This surface component was identified by a monoclonal antibody, ID-7.2.3, raised against detergent-extracted components of membranes of chicken cardiac muscle rich in intercalated discs. The antibodies stain extensively adherens junctions in intact cardiac muscle and in lens, as well as in cultured cells derived from these tissues. In living cultured cells only very little immunolabelling was obtained with ID-7.2.3 antibodies, probably due to the limited accessibility of the antibodies to the intercellular gap. However, upon the removal of extracellular Ca2+ ions a dissociation of the junction occurred, leading to the rapid exposure of the 135-kd protein. Immunoelectron microscopic labelling of EGTA-treated, or detergent-permeabilized cells indicated that the antigen is found along the plasma membrane and highly enriched in contact areas. Double immunolabelling for both the 135-kd protein and vinculin pointed to the close association of the two in intercellular junctions and to the apparent absence of the former protein from the vinculin-rich focal contacts of cultured cells and from dense plaque of smooth muscle. Immunoblotting indicated that the 135-kd protein is present in many tissues but is particularly enriched in heart, lens and brain.  相似文献   

15.
Dystrophin coordinates the assembly of a complex of structural and signaling proteins that are required for normal muscle function. A key component of the dystrophin protein complex is alpha-dystrobrevin, a dystrophin-associated protein whose absence results in neuromuscular junction defects and muscular dystrophy. To gain further insights into the role of alpha-dystrobrevin in skeletal muscle, we used the yeast two-hybrid system to identify a novel alpha-dystrobrevin-binding partner called syncoilin. Syncoilin is a new member of the intermediate filament superfamily and is highly expressed in skeletal and cardiac muscle. In normal skeletal muscle, syncoilin is concentrated at the neuromuscular junction, where it colocalizes and coimmunoprecipitates with alpha-dystrobrevin-1. Expression studies in mammalian cells demonstrate that, while alpha-dystrobrevin and syncoilin associate directly, overexpression of syncoilin does not result in the self-assembly of intermediate filaments. Finally, unlike many components of the dystrophin protein complex, we show that syncoilin expression is up-regulated in dystrophin-deficient muscle. These data suggest that alpha-dystrobrevin provides a link between the dystrophin protein complex and the intermediate filament network at the neuromuscular junction, which may be important for the maintenance and maturation of the synapse.  相似文献   

16.
We have shown previously that dystrophin is a component of postsynaptic membranes in Torpedo electric organ and is localized at mammalian neuromuscular synapses. In skeletal muscle, dystrophin is also detectable at the non-synaptic membrane of the myofiber, whereas in the electric organ, dystrophin is strictly localized to the postsynaptic membrane, and is not detectable in non-synaptic membranes. Multiple isoforms of dystrophin are present in skeletal muscle, and different isoforms could potentially be targetted to synaptic and non-synaptic membranes. We sought to determine whether the electric organ contains a single, or multiple isoforms of dystrophin, and we show here that the electric organ contains both a and b isoforms of dystrophin. Because dystrophin is found only at the postsynaptic membrane of the electric organ, we conclude that the two isoforms coexist in the postsynaptic membrane.  相似文献   

17.
Fluorescence resonance energy transfer (FRET) experiments at neuromuscular junctions in the mouse tibialis anterior muscle show that postsynaptic acetylcholine receptors (AChRs) become more tightly packed during the first month of postnatal development. Here, we report that the packing of AChRs into postsynaptic aggregates was reduced in 4-week postnatal mice that had reduced amounts of the AChR-associated protein, rapsyn, in the postsynaptic membrane (rapsyn(+/-) mice). We hypothesize that nerve-derived agrin increases postsynaptic expression and targeting of rapsyn, which then drives the developmental increase in AChR packing. Neural agrin treatment elevated the expression of rapsyn in C2 myotubes by a mechanism that involved slowing of rapsyn protein degradation. Similarly, exposure of synapses in postnatal muscle to exogenous agrin increased rapsyn protein levels and elevated the intensity of anti-rapsyn immunofluorescence, relative to AChR, in the postsynaptic membrane. This increase in the rapsyn-to-AChR immunofluorescence ratio was associated with tighter postsynaptic AChR packing and slowed AChR turnover. Acute blockade of synaptic AChRs with alpha-bungarotoxin lowered the rapsyn-to-AChR immunofluorescence ratio, suggesting that AChR signaling also helps regulate the assembly of extra rapsyn in the postsynaptic membrane. The results suggest that at the postnatal neuromuscular synapse agrin signaling elevates the expression and targeting of rapsyn to the postsynaptic membrane, thereby packing more AChRs into stable, functionally-important AChR aggregates.  相似文献   

18.
A 34,000-Da Ca2+-dependent membrane binding protein (34K) was purified from the electric organ of Torpedo marmorata. Specific antibodies to this protein were raised in rabbits, and radioimmunoassay was used to test the presence of 34K in different tissues of Torpedo as well as in other species. In Torpedo, not only the electric organ, but also the muscle, the spleen, and the liver contained 34K antigenicity. Blood was the only tissue in which 34K antigenicity could not be detected. A 34,000-Da protein (Mr 32,000-36,000) that bound to Torpedo acetylcholine receptor (AChR)-rich membrane in a Ca2+-dependent manner and cross-reacted with anti-(Torpedo 34K) antibody was found in chicken muscle, rat muscle, marine mollusk (Aplysia) central ganglia, and rat and human brain. The concentration of 34K seems to be controlled during development. Chicken 34K antigenicity reached a peak on embryonic day 18, declined, and finally gained its maximal value after synaptic maturation. The AChR concentration in chicken legs also changed in the course of muscle development, although it showed a peak on embryonic day 12 and then declined rapidly. In rat diaphragm, both AChRs and 34K were concentrated in the subsynaptic region. Transection of the phrenic nerve induced the synthesis of AChRs in postsynaptic muscle fibers. This operation did not increase the amount of 34K in the diaphragm. On the contrary, it reduced 34K content to the extrasynaptic level. Taken together, these results support the idea that 34K is an important structural constituent of mature synapses, an observation suggesting the involvement of this protein in the function of the mature synapse.  相似文献   

19.
《The Journal of cell biology》1988,106(4):1263-1272
The synaptic basal lamina, a component of extracellular matrix (ECM) in the synaptic cleft at the neuromuscular junction, directs the formation of new postsynaptic specializations, including the aggregation of acetylcholine receptors (AChRs), during muscle regeneration in adult animals. Although the molecular basis of this phenomenon is unknown, it is mimicked by AChR-aggregating proteins in ECM-enriched fractions from muscle and the synapse-rich electric organ of the ray Torpedo californica. Molecules immunologically similar to these proteins are concentrated in the synaptic basal lamina at neuromuscular junctions of the ray and frog. Here we demonstrate that immunologically, chemically, and functionally similar AChR-aggregating proteins are also associated with the ECM of several other tissues in Torpedo. Monoclonal antibodies against the AChR-aggregating proteins from electric organ intensely stained neuromuscular junctions and the ventral surfaces of electrocytes, structures with a high density of AChRs. However, they also labeled many other structures which have basal laminae, including the extrajunctional perimeters of skeletal muscle fibers, smooth and cardiac muscle cells, Schwann cell sheaths in peripheral nerves, walls of some blood vessels, and epithelial basement membranes in the gut, skin, and heart. Some structures with basal laminae did not stain with the antibodies; e.g., the dorsal surfaces of electrocytes. Bands of similar molecular weight were detected by the antibodies on Western blots of extracts of ECM-enriched fractions from electric organ and several other tissues. Proteins from all tissues examined, enriched from these extracts by affinity chromatography with the monoclonal antibodies, aggregated AChRs on cultured myotubes. Thus, similar AChR- aggregating proteins are associated with the extracellular matrix of many Torpedo tissues. The broad distribution of these proteins suggests they have functions in addition to AChR aggregation.  相似文献   

20.
The nicotinic acetylcholine receptor and a receptor-associated protein of 43 kDa are the major proteins present in postsynaptic membranes isolated from Torpedo electric organ. Immunochemical analyses indicated that a protein sharing antigenic determinants with the receptor-associated protein is also present at receptor clusters of muscle cell lines and postsynaptic membranes of vertebrate neuromuscular junctions. We now provide definitive proof that a homolog of the 43-kDa protein exists in mammals. Complimentary DNA clones encoding the complete protein sequence have been isolated from the mouse muscle cell line, BC3H1. We heretofore refer to these proteins as nicotinic receptor-associated proteins at synapses or N-RAP-syns. The deduced sequence of mouse RAPsyn has 412 amino acids and a molecular mass of 46,392 daltons. The overall identity with Torpedo RAPsyn is 70%; some regions are extremely well conserved and are therefore postulated to be functionally important. Important domains, including the amino terminus and a cAMP-dependent protein kinase phosphorylation site, are conserved between species. Several structural features are consistent with the proposal that RAPsyn is a peripheral membrane protein that associates with membranes by virtue of covalently bound myristate. Although multiple mRNAs were previously identified in Torpedo electric organ, RNA blot analysis reveals a single polyadenylated RAPsyn mRNA of approximately equal to 2.0 kilobases in newborn and 4-week-old mouse muscle. Finally, genomic DNA blot analysis indicates that a single N-RAPsyn gene is present in the mouse genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号