共查询到20条相似文献,搜索用时 0 毫秒
1.
Human umbilical cord blood is frequently used as a source of transplantable hematopoietic cells and more recently as a target of gene therapy - a new approach for treatment of various disorders. The aim of our study was optimisation of the transfection conditions of cord blood-derived CD34(+) hematopoietic cells. Mononuclear cells fraction was isolated from cord blood samples by density gradient centrifugation. Subsequently, CD34(+) hematopoietic cells were separated on immunomagnetic MiniMACS columns. Pure population of CD34(+) cells was incubated in a serum free medium supplemented with thrombopoietin, stem cell factor and Flt-3 ligand for 48 h and then transfected with plasmid DNA carrying the enhanced version of green fluorescent protein (EGFP) as a reporter gene. We studied the influence of various pulse settings and DNA concentrations on the transfection efficiency, measured by flow cytometry as the fluorescence of target cells due to the expression of EGFP. The optimal settings were as follows: 4 mm cuvette, 1600 microF, 550 V/cm, and 10 microg of DNA per 500 microl. With these settings we obtained a high transfection frequency (41.2%) without a marked decrease of cell viability. An increase of the pulse capacitance and/or of DNA concentration resulted in a greater electroporation efficiency, but also in a decrease of cell viability. In conclusion, the results described here allow one to recommend electroporation as an efficient method of gene delivery into CD34(+) hematopoietic cells derived from human umbilical cord blood. 相似文献
2.
AimsThe potential of human mesenchymal stem cell-like stroma prepared from placental/umbilical cord blood for hematopoietic regeneration by X-irradiated hematopoietic stem cells is herein assessed.Main methodsPlacental/umbilical cord blood-derived mesenchymal stem cell-like stromal cells were applied to a regenerative ex vivo expansion of X-irradiated human CD34+ cells in a serum-free liquid culture supplemented with a combination of interleukine-3 plus stem cell factor plus thrombopoietin.Key findingsThe total number of cells and of lineage-committed myeloid hematopoietic progenitor cells generated in the co-culture of both non-irradiated and X-irradiated cells with stromal cells was significantly higher than those in the stroma-free culture. In addition, the number of CD34+ cells and CD34+/CD38? cells, immature hematopoietic stem/progenitor cells also increased more than the stroma-free culture. The stromal cells produced various types of cytokines, although there was little difference between the co-cultures of non-irradiated and X-irradiated cells with stromal cells. Furthermore, when X-irradiated cells came in contact with stromal cells for 16 h before cytokine stimulation, a similar degree of hematopoiesis was observed, thus suggesting the critical role of cell-to-cell interaction.SignificanceThe present results showed the potential efficacy of human mesenchymal stem cell-like stroma for hematopoietic regeneration from irradiated hematopoietic stem/progenitor cells. 相似文献
3.
Tong Li Qunxing Ma Meng Ning Yue Zhao Yuelong Hou 《Molecular and cellular biochemistry》2014,387(1-2):91-100
The objective of the study is to investigate the effect of hypoxic preconditioning on the immunomodulatory properties of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and the effect of cotransplantation of hUC-MSCs and human umbilical cord blood (hUCB)-derived CD34+ cells in a rabbit model of myocardial infarction. hUC-MSCs with or without hypoxic preconditioning by cobalt chloride were plated in a 24-well plate, and then cocultured with hUCB-CD34+ cells and PBMCs for 96 h at 37 °C in a 5 % CO2 incubator. For the negative control, hUC-MSCs were omitted. The groups were divided as follows: A1 = HP-MSCs + hUCB-CD34+ cells + PBMC, A2 = hUC-MSCs + hUCB-CD34+ cells + PBMC, Negative Control = hUCB-CD34+ cells + PBMC. Culture supernatants of each group were collected, and the IL-10 and IFN-γ levels were measured by ELISA. A rabbit model of MI was established using a modified Fujita method. The animals were then randomized into three groups and received intramyocardial injections of 0.4 ml of PBS alone (n = 8, PBS group), hUC-MSCs in PBS (n = 8, hUC-MSCs group), or hUC-MSCs + CD34+ cells in PBS (n = 8, Cotrans group), at four points in the infarct border zone. Echocardiography was performed at baseline, 4 weeks after MI induction, and 4 weeks after cell transplantation, respectively. Stem cell differentiation and neovascularization in the infracted area were characterized for the presence of cardiac Troponin I (cTnI) and CD31 by immunohistochemical staining, and the extent of myocardial fibrosis was evaluated by hematoxylin and eosin (H&E) and Masson’s trichrome. IFN-γ was 27.00 ± 1.11, 14.20 ± 0.81, and 7.22 ± 0.14 pg/ml, and IL-10 was 31.68 ± 3.08, 61.42 ± 1.08, and 85.85 ± 1.80 pg/ml for the Control, A1 and A2 groups, respectively, which indicated that hUCB-CD34+ cells induced immune reaction of peripheral blood mononuclear cells, whereas both hUC-MSCs and HP-MSCs showed an immunosuppressive effect, which, however, was attenuated by hypoxic preconditioning. The Cotrans group had less collagen deposition in the infarcted myocardium and better heart function than the hUC-MSCs or PBS group. The presence of cTnI-positive cells and CD31-positive tubular structures indicated the differentiation of stem cells into cardiomyocytes and neovascularization. The microvessel density was 12.19 ± 3.05/HP for the hUC-MSCs group and 31.63 ± 2.45/HP for the Cotrans group, respectively (P < 0.01). As a conclusion, both hUC-MSCs and HP-MSCs have an immunosuppressive effect on lymphocytes, which, however, can be attenuated by hypoxic preconditioning. Cotransplantation of hUC-MSCs and hUCB-CD34+ cells can improve heart function and decrease collagen deposition in post-MI rabbits. Thus, a combined regimen of hUC-MSCs and hUCB-CD34+ cells would be more desirable than either cells administered alone. This is most likely due to the increase of cardiomyocytes and enhanced angiogenesis in the infarcted myocardium. 相似文献
4.
Jung Yeon Lim Sun Hwa Park Chang Hyun Jeong Ji Hyeon Oh Seong Muk Kim Chung Hun Ryu Soon A Park Jae Geun Ahn Wonil Oh Sin-Soo Jeun Jong Wook Chang 《BMC biotechnology》2010,10(1):1-13
Background
Mesenchymal stem cells (MSCs) are an attractive source of adult stem cells for therapeutic application in clinical study. Genetic modification of MSCs with beneficial genes makes them more effective for therapeutic use. However, it is difficult to transduce genes into MSCs by common transfection methods, especially nonviral methods. In this study, we applied microporation technology as a novel electroporation technique to introduce enhanced green fluorescent protein (EGFP) and brain-derived neurotropfic factor (BDNF) plasmid DNA into human umbilical cord blood-derived MSCs (hUCB-MSCs) with significant efficiency, and investigated the stem cell potentiality of engineered MSCs through their phenotypes, proliferative capacity, ability to differentiate into multiple lineages, and migration ability towards malignant glioma cells.Results
Using microporation with EGFP as a reporter gene, hUCB-MSCs were transfected with higher efficiency (83%) and only minimal cell damage than when conventional liposome-based reagent (<20%) or established electroporation methods were used (30-40%). More importantly, microporation did not affect the immunophenotype of hUCB-MSCs, their proliferation activity, ability to differentiate into mesodermal and ectodermal lineages, or migration ability towards cancer cells. In addition, the BDNF gene could be successfully transfected into hUCB-MSCs, and BDNF expression remained fairly constant for the first 2 weeks in vitro and in vivo. Moreover, microporation of BDNF gene into hUCB-MSCs promoted their in vitro differentiation into neural cells.Conclusion
Taken together, the present data demonstrates the value of microporation as an efficient means of transfection of MSCs without changing their multiple properties. Gene delivery by microporation may enhance the feasibility of transgenic stem cell therapy. 相似文献5.
Preparation of a low molecular weight polyethylenimine for efficient cell transfection 总被引:6,自引:0,他引:6
Polyethylenimines (PEIs) of a molecular weight between 25 and about 800 kDa have successfully been used for in vitro and in vivo gene delivery approaches. Recent publications indicated that PEI molecules of lower molecular weight and a small molecular weight range are also efficient transfection reagents with a much lower cytotoxicity compared to high molecular weight PEIs. Here, we describe the application of a molecular sieve chromatography to fractionate a commercially available 25-kDa PEI. We generated three pools of PEIs with molecular weight ranges of 70-360 (I), 10-70 (II), and 0.5-10 kDa (III), respectively. We show that, in comparison with the 25-kDa PEI, pool III increased the expression of luciferase up to 100-fold and the number of transfected cells 2-3 fold. In addition, the kinetics of reporter gene expression was also much faster in pool III, compared with the 25-kDa PEI or with pools I or II. Finally, pool III showed the lowest cytotoxicity in comparison with the other PEI preparations. Thus, we provide a one-step processing of a 25-kDa PEI, resulting in a more effective and also less cytotoxic transfection reagent. 相似文献
6.
The purpose of this study was to evaluate the influence of bone marrow-mesenchymal stem cells (BM-MSC) and exogenously added cytokines on the proliferation, primitive cell subpopulation maintenance (including the c-kit+ marker) and clonogenic capacity of hematopoietic stem cells (HSC). BM-MSC were collected from volunteer donors, isolated and characterized. Umbilical cord blood (UCB) samples were collected from healthy full-term deliveries. UCB-CD34+ cells were cultured in the presence or absence of BM-MSC and/or cytokines for 3 and 7 days. CD34+ cell proliferation was evaluated using the CSFE method and cell phenotype was determined by CD34, c-kit, CD33, CD38, HLA-DR, cyCD22 and cyCD3 detection. Cell clonogenic ability was also assessed. Exogenously added SCF, TPO and FLT3L increasedCD34+ cell proliferation in the presence or absence of BM-MSC, but with concomitant cell differentiation. Without any added cytokines, BM-MSC are able to increase the percentage of primitive progenitors as evaluated by c-kit expression and CFU-GEMM increase. Interestingly, this latter effect was dependent on both cell-cell interactions and secreted factors. A 7-day co-culture period will be optimal for obtaining an increased primitive HSC level. Including c-kit as a marker for primitive phenotype evaluation has shown the relevance of BM-MSC and their secreted factors on UCB-HSC stemness function. This effect could be dissociated from that of the addition of exogenous cytokines, which induced cellular differentiation instead. 相似文献
7.
8.
9.
10.
LIU YiMing ZHANG BoWen ZHANG Jing WANG SiHan YAO HaiLei HE LiJuan CHEN Lin YUE Wen LI YanHua PEI XueTao 《中国科学:生命科学英文版》2014,57(2):188-194
Due to the low number of collectable stem cells from single umbilical cord blood(UCB)unit,their initial uses were limited to pediatric therapies.Clinical applications of UCB hematopoietic stem and progenitor cells(HSPCs)would become feasible if there were a culture method that can effectively expand HSPCs while maintaining their self-renewal capacity.In recent years,numerous attempts have been made to expand human UCB HSPCs in vitro.In this study,we report that caffeic acid phenethyl ester(CAPE),a small molecule from honeybee extract,can promote in vitro expansion of HSPCs.Treatment with CAPE increased the percentage of HSPCs in cultured mononuclear cells.Importantly,culture of CD34+HSPCs with CAPE resulted in a significant increase in total colony-forming units and high proliferative potential colony-forming units.Burst-forming unit-erythroid was the mostly affected colony type,which increased more than 3.7-fold in 1μg mL 1CAPE treatment group when compared to the controls.CAPE appears to induce HSPC expansion by upregulating the expression of SCF and HIF1-α.Our data suggest that CAPE may become a potent medium supplement for in vitro HSPC expansion. 相似文献
11.
Natural Killer (NK)-cells are peripheral blood lymphocytes that represent an important arm of the innate immune system. NK-cells play a critical role in the immune surveillance against tumors and virally infected cells in a major histocompatibiliy complex (MHC)-unrestricted fashion. We have explored such capacities of NK-cells after differentiation from hematopoietic stem and progenitor cells derived from human umbilical cord blood. Several culture conditions have been established supporting proliferation and subsequent differentiation of these cells in terms of receptor expression and specific lysis depending on the growth conditions in the presence and absence of supportive stromal feeders. We show that acquisition of Killer Immunoglobulin Receptor (KIR) as well as NK Cytotoxicity Receptor expressions is independent of culture condition whereas absence of stromal feeders did not support acquisition of CD94/NKG2A expression. Such KIR-positive/NKG2A-negative cells generated under different culture conditions showed strong and specific cytolytic activity which could have impact on further immunotherapeutic strategies. 相似文献
12.
《Cell communication & adhesion》2013,20(3):45-55
AbstractNatural Killer (NK)-cells are peripheral blood lymphocytes that represent an important arm of the innate immune system. NK-cells play a critical role in the immune surveillance against tumors and virally infected cells in a major histocompatibiliy complex (MHC)-unrestricted fashion. We have explored such capacities of NK-cells after differentiation from hematopoietic stem and progenitor cells derived from human umbilical cord blood. Several culture conditions have been established supporting proliferation and subsequent differentiation of these cells in terms of receptor expression and specific lysis depending on the growth conditions in the presence and absence of supportive stromal feeders. We show that acquisition of Killer Immunoglobulin Receptor (KIR) as well as NK Cytotoxicity Receptor expressions is independent of culture condition whereas absence of stromal feeders did not support acquisition of CD94/NKG2A expression. Such KIR-positive/NKG2A-negative cells generated under different culture conditions showed strong and specific cytolytic activity which could have impact on further immunotherapeutic strategies. 相似文献
13.
Burba I Colombo GI Staszewsky LI De Simone M Devanna P Nanni S Avitabile D Molla F Cosentino S Russo I De Angelis N Soldo A Biondi A Gambini E Gaetano C Farsetti A Pompilio G Latini R Capogrossi MC Pesce M 《PloS one》2011,6(7):e22158
Background
Use of peripheral blood- or bone marrow-derived progenitors for ischemic heart repair is a feasible option to induce neo-vascularization in ischemic tissues. These cells, named Endothelial Progenitors Cells (EPCs), have been extensively characterized phenotypically and functionally. The clinical efficacy of cardiac repair by EPCs cells remains, however, limited, due to cell autonomous defects as a consequence of risk factors. The devise of “enhancement” strategies has been therefore sought to improve repair ability of these cells and increase the clinical benefit.Principal Findings
Pharmacologic inhibition of histone deacetylases (HDACs) is known to enhance hematopoietic stem cells engraftment by improvement of self renewal and inhibition of differentiation in the presence of mitogenic stimuli in vitro. In the present study cord blood-derived CD34+ were pre-conditioned with the HDAC inhibitor Valproic Acid. This treatment affected stem cell growth and gene expression, and improved ischemic myocardium protection in an immunodeficient mouse model of myocardial infarction.Conclusions
Our results show that HDAC blockade leads to phenotype changes in CD34+ cells with enhanced self renewal and cardioprotection. 相似文献14.
15.
To develop chitosan-based efficient gene vectors, chitosans with different molecular weights were chemically modified with low molecular weight polyethylenimine. The molecular weight and composition of polyethylenimine grafted N-maleated chitosan (NMC-g-PEI) copolymers were characterized using gel permeation chromatography (GPC) and (1)H NMR, respectively. Agarose gel electrophoresis assay showed that NMC-g-PEI had good binding ability with DNA, and the particle size of the NMC-g-PEI/DNA complexes was 200-400 nm, as determined by a Zeta sizer. The nanosized complexes observed by scanning electron microscopy (SEM) exhibited a compact and spherical morphology. The NMC-g-PEI copolymers showed low cytotoxicity and good transfection activity, comparable to PEI (25 KDa) in both 293T and HeLa cell lines, except for NMC 50K-g-PEI. The results indicated that the molecular weight of NMC-g-PEI has an important effect on cytotoxicity and transfection activity, and low molecular weight NMC-g-PEI has a good potential as efficient nonviral gene vectors. 相似文献
16.
The major cause of mortality in measles is generalized suppression of cell-mediated immunity that persists following virus clearance and results in secondary infections. The mechanisms contributing to this long-term immunosuppression are not clear. Herein we present evidence that measles virus (MV) disrupts hematopoiesis by infecting human CD34+ cells and human bone marrow stroma. MV infection does not affect the hematopoietic capability of hematopoietic stem cells (HSCs) directly; rather, the infection impairs the ability of stroma to support development of HSCs. These results suggest that MV-mediated defects in hematopoiesis contribute to the long-term immunosuppression seen in measles. 相似文献
17.
Grant BW Trombley LM Hunter TC Nicklas JA O'Neill JP Albertini RJ 《Mutation research》1999,431(2):3848-198
The HPRT mutations in T lymphocytes are widely utilized as biomarkers of environmental exposure and effect. The HPRT gene detects a wide variety of mutation types, many of which are similar at the molecular level to those found in oncogenes in cancers. However, it remains to be determined whether the assay for mutations in T lymphocytes is reflective of mutagenic events in tissues or cells which have high frequencies of malignancy in humans. We now demonstrate that the HPRT gene can be utilized to detect mutations in myeloid stem cells, which are frequent progenitor cells of leukemias. This myeloid stem cell assay shows an age related increase in mutation at HPRT and also detects increases in mutant frequency (M-MF) in patients who have undergone chemotherapy. The myeloid mutants are confirmed to have mutations in the HPRT gene by DNA sequence analysis. Increases in M-MF are seen as expected in the clonally unstable myeloid stem cells of patients with myelodysplastic syndromes; however, unexpectedly these patients also have elevated T-lymphocyte mutant frequencies (T-MF). A good correlation is shown between M-MFs and T-MFs in the same patients. Thus, it appears that the T-lymphocyte assay, which is technically much less demanding than the myeloid assay, appears to faithfully represent the frequency of mutagenic events in the myeloid lineage. 相似文献
18.
Phuc Van Pham Phuoc Thi-My Nguyen Anh Thai-Quynh Nguyen Vuong Minh Pham Anh Nguyen-Tu Bui Loan Thi-Tung Dang Khue Gia Nguyen Ngoc Kim Phan 《Differentiation; research in biological diversity》2014
Numerous studies have sought to identify diabetes mellitus treatment strategies with fewer side effects. Mesenchymal stem cell (MSC) therapy was previously considered as a promising therapy; however, it requires the cells to be trans-differentiated into cells of the pancreatic-endocrine lineage before transplantation. Previous studies have shown that PDX-1 expression can facilitate MSC differentiation into insulin-producing cells (IPCs), but the methods employed to date use viral or DNA-based tools to express PDX-1, with the associated risks of insertional mutation and immunogenicity. Thus, this study aimed to establish a new method to induce PDX-1 expression in MSCs by mRNA transfection. MSCs were isolated from human umbilical cord blood and expanded in vitro, with stemness confirmed by surface markers and multipotentiality. MSCs were transfected with PDX-1 mRNA by nucleofection and chemically induced to differentiate into IPCs (combinatorial group). This IPC differentiation was then compared with that of untransfected chemically induced cells (inducer group) and uninduced cells (control group). We found that PDX-1 mRNA transfection significantly improved the differentiation of MSCs into IPCs, with 8.3±2.5% IPCs in the combinatorial group, 3.21±2.11% in the inducer group and 0% in the control. Cells in the combinatorial group also strongly expressed several genes related to beta cells (Pdx-1, Ngn3, Nkx6.1 and insulin) and could produce C-peptide in the cytoplasm and insulin in the supernatant, which was dependent on the extracellular glucose concentration. These results indicate that PDX-1 mRNA may offer a promising approach to produce safe IPCs for clinical diabetes mellitus treatment. 相似文献
19.
20.
Hye Jin Jin Se Kyong Park Yoon Sun Yang Soo Jin Choi 《Biochemical and biophysical research communications》2009,381(4):676-681
Umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) have multi-lineage differentiation potential, thus highlighting the feasibility of using UCB-MSCs as a valuable source of stem-cells for cell-based therapy. However, there are no well-defined markers for assessment of the multi-potency of UCB-MSCs. Thus, we focused on the identification of suitable markers by examining cell surface protein expressions of UCB-MSCs as their multi-lineage differentiations progressed. The expression of CD105, one of the cell surface proteins, was significantly decreased in differentiated osteoblasts, chondrocytes, adipocytes, and respiratory epithelium, and the portion of CD105-positive cells from 99.4 ± 0.1% to 3.5 ± 1.4%, 3.5 ± 2.3%, 16.7 ± 3.6%, and 2.1 ± 1.5%, respectively. As to such indicators as alkaline phosphatase (ALP), glycosaminoglycan (GAG), oil Red O, and surfactant protein C (SPC), they showed increases, confirming differentiation of UCB-MSCs into osteoblasts, chondrocytes, adipocytes, and respiratory epithelium. This is the first study to demonstrate a negative correlation between expression of CD105 over the time course of multi-lineage differentiation and the degree of differentiation of UCB-MSCs. We propose that CD105 is a useful novel marker to characterize differentiation status of isolated human UCB-MSCs, which will be useful to facilitate the application of such cells in stem-cell therapy. 相似文献