首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synaptic ribbons are large proteinaceous scaffolds at the active zone of ribbon synapses that are specialized for rapid sustained synaptic vesicles exocytosis. A single ribbon‐specific protein is known, RIBEYE, suggesting that ribbons may be constructed from RIBEYE protein. RIBEYE knockdown in zebrafish, however, only reduced but did not eliminate ribbons, indicating a more ancillary role. Here, we show in mice that full deletion of RIBEYE abolishes all presynaptic ribbons in retina synapses. Using paired recordings in acute retina slices, we demonstrate that deletion of RIBEYE severely impaired fast and sustained neurotransmitter release at bipolar neuron/AII amacrine cell synapses and rendered spontaneous miniature release sensitive to the slow Ca2+‐buffer EGTA, suggesting that synaptic ribbons mediate nano‐domain coupling of Ca2+ channels to synaptic vesicle exocytosis. Our results show that RIBEYE is essential for synaptic ribbons as such, and may organize presynaptic nano‐domains that position release‐ready synaptic vesicles adjacent to Ca2+ channels.  相似文献   

2.
Synaptic ribbons are trilaminated plate-shaped presynaptic densities of certain types of receptor cells and neurons. In cone photoreceptors, these structures dissassemble and reassemble in response to light and to a variety of other stimuli. We used the lithium-ionenhanced disassembly and reassembly of synaptic ribbons to characterize structural intermediates in these cyclic changes. A few minutes after exposure of isolated retinas from the crucian carp (Carassius carassius) to lithium, ribbons fragmented into 50-nm-sized dense globular structures. These small spheres were concentrically surrounded by synaptic vesicles attached to them by stalk-like fine bridging filaments. Disassembly always started at the free cytoplasmic edges of the ribbons and proceeded toward the membrane-associated edges. As the disassembly process never started at the membraneanchored site, synaptic ribbons appeared to be polarized structures with functionally different ends. Spheres were subjected to further depolymerization. They disintegrated into clusters of small granular material and disappeared after ca. 45 min of lithium treatment. Spheres were not observed during the reassembly of synaptic ribbons, indicating that the assembly of synaptic ribbons proceeds via smaller subunits.  相似文献   

3.
Summary Synaptic ribbons, functionally enigmatic structures of mammalian pinealocytes, were studied during the postnatal development of the pineal gland in the golden hamster (Mesocricetus auratus). On day 4 post partum, synaptic ribbons appear in cells that have already started to differentiate into pinealocytes. Between days 4 and 9, an increase in the number of synaptic ribbons occurs, concomitant with the continuing differentiation of the pineal tissue. Between days 9 and 16, when differentiation of this tissue is almost completed, the number of synaptic ribbons decreases and approaches that characteristic of the adult pineal gland. During development, the synaptic ribbons increase in length, and dense core vesicles are frequently found in the vicinity of these structures. It is assumed that a functional relationship exists between dense core vesicles and the synaptic ribbons, which are considered to be engaged in a certain form of secretory activity of the mammalian pineal gland.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

4.
Pineal "synaptic" ribbons are a heterogeneous population of organelles. "Synaptic" ribbons (SR) sensu stricto, "synaptic" spherules (SS), and intermediate forms (IMF) are present. Their function and origin are unknown, and a knowledge of their prenatal development is lacking. Thus the pineal glands of prenatal, neonatal, and adult guinea pigs were prepared for electron microscopy. "Synaptic" ribbons were studied morphologically and quantitatively. The three categories of "synaptic" ribbons reported in adult pineal glands were also present in prenatal pineal glands. Their structural features, distribution, grouping, and composition patterns are similar to those in adults. "Synaptic" ribbons were first detected in pinealocytes of the distal region of a 42-day postcoitus (PC) pineal gland and were comparable with those in adults. They increased in number with age and reached a peak at 63 days PC, followed by a steep decline at 66 and 67 days PC. By day 69 PC, the numbers increased again and showed a dramatic increase after birth. Several true ribbon synapses were seen at day 63 PC between pinealocyte cell processes or between pinealocyte cell process and pinealocyte cell body. Since true ribbon synapses have not been found in adult guinea pig pinealocytes, their synaptic nature could have been lost during development. No precursors for the "synaptic" ribbons were found. The endoplasmic reticulum cisternae may be the origin for the ribbon vesicles because of their close association with the "synaptic" ribbons.  相似文献   

5.
Guanylate cyclase activating proteins are EF-hand containing proteins that confer calcium sensitivity to retinal guanylate cyclase at the outer segment discs of photoreceptor cells. By making the rate of cGMP synthesis dependent on the free intracellular calcium levels set by illumination, GCAPs play a fundamental role in the recovery of the light response and light adaptation. The main isoforms GCAP1 and GCAP2 also localize to the synaptic terminal, where their function is not known. Based on the reported interaction of GCAP2 with Ribeye, the major component of synaptic ribbons, it was proposed that GCAP2 could mediate the synaptic ribbon dynamic changes that happen in response to light. We here present a thorough ultrastructural analysis of rod synaptic terminals in loss-of-function (GCAP1/GCAP2 double knockout) and gain-of-function (transgenic overexpression) mouse models of GCAP2. Rod synaptic ribbons in GCAPs-/- mice did not differ from wildtype ribbons when mice were raised in constant darkness, indicating that GCAPs are not required for ribbon early assembly or maturation. Transgenic overexpression of GCAP2 in rods led to a shortening of synaptic ribbons, and to a higher than normal percentage of club-shaped and spherical ribbon morphologies. Restoration of GCAP2 expression in the GCAPs-/- background (GCAP2 expression in the absence of endogenous GCAP1) had the striking result of shortening ribbon length to a much higher degree than overexpression of GCAP2 in the wildtype background, as well as reducing the thickness of the outer plexiform layer without affecting the number of rod photoreceptor cells. These results indicate that preservation of the GCAP1 to GCAP2 relative levels is relevant for maintaining the integrity of the synaptic terminal. Our demonstration of GCAP2 immunolocalization at synaptic ribbons at the ultrastructural level would support a role of GCAPs at mediating the effect of light on morphological remodeling changes of synaptic ribbons.  相似文献   

6.
7.
8.
The ectopic distribution of synaptic ribbons in dendrites of mouse retinal bipolar cells was examined by using genetic ablation of metabotropic glutamate receptor subtype 6 (mGluR6), electron microscopy, and immunocytochemistry. Ectopic ribbons were observed in dendrites of rod and ON-cone bipolar cells in the mGluR6-deficient mouse but not in those of wild-type mice. The number of rod spherules facing the ectopic ribbons in mGluR6-deficient rod bipolar dendrites increased gradually during early growth and reached a plateau level of about 20% at 12 weeks. These ectopic ribbons were immunopositive for RIBEYE, a ribbon-specific protein, but the associated vesicles were immunonegative for synaptophysin, a synaptic-vesicle-specific protein. The presence of ectopic ribbons was correlated with an increase in the roundness of the invaginating dendrites of the rod bipolar cells. We further confirmed ectopic ribbons in dendrites of OFF-cone bipolar cells in wild-type retinas. Of the four types of OFF-cone bipolar cells (T1–T4), only the T2-type, which had a greater number of synaptic ribbons at the axon terminal and a thicker axon cylinder than the other types, had ectopic ribbons. Light-adapted experiments revealed that, in wild-type mice under enhanced-light adaptation (considered similar to the mGluR6-deficient state), the roundness in the invaginating dendrites and axon terminals of rod bipolar cells increased, but no ectopic ribbons were detected. Based on these findings and known mechanisms for neurotransmitter release and protein trafficking, the possible mechanisms underlying the ectopic ribbons are discussed on the basis of intracellular transport for the replenishment of synaptic proteins.  相似文献   

9.
The organization, morphological characteristics, and synaptic structure of photoreceptors in the adult zebrafish retina were studied using light and electron microscopy. Adult photoreceptors show a typical ordered tier arrangement with rods easily distinguished from cones based on outer segment (OS) morphology. Both rods and cones contain mitochondria within the inner segments (IS), including the large, electron-dense megamitochondria previously described (Kim et al.) Four major ultrastructural differences were observed between zebrafish rods and cones: (1) the membranes of cone lamellar disks showed a wider variety of relationships to the plasma membrane than those of rods, (2) cone pedicles typically had multiple synaptic ribbons, while rod spherules had 1-2 ribbons, (3) synaptic ribbons in rod spherules were ∼2 times longer than ribbons in cone pedicles, and (4) rod spherules had a more electron-dense cytoplasm than cone pedicles. Examination of photoreceptor terminals identified four synaptic relationships at cone pedicles: (1) invaginating contacts postsynaptic to cone ribbons forming dyad, triad, and quadrad synapses, (2) presumed gap junctions connecting adjacent postsynaptic processes invaginating into cone terminals, (3) basal junctions away from synaptic ribbons, and (4) gap junctions between adjacent photoreceptor terminals. More vitread and slightly farther removed from photoreceptor terminals, extracellular microtubule-like structures were identified in association with presumed horizontal cell processes in the OPL. These findings, the first to document the ultrastructure of the distal retina in adult zebrafish, indicate that zebrafish photoreceptors have many characteristics similar to other species, further supporting the use of zebrafish as a model for the vertebrate visual system.  相似文献   

10.
Summary In the present investigation experiments were carried out to determine whether the functionally obscure synaptic ribbons of mammalian pinealocytes can be affected by acute changes in environmental lighting and which chemical processes may be involved in their regulation. Experiments carried out in male guinea-pigs have shown that the amounts of synaptic ribbons are immediately affected by changes in the lighting pattern. Extension of the light period reduced the normally occurring increase, whereas extension of the dark period inhibited the normally occurring decrease in the amount of synaptic ribbons. Results following injections of a number of drugs known to influence pineal function (noradrenaline, L-DOPA, propranolol, reserpine and p-chlorophenylalanine, respectively) suggest that synaptic ribbons may be directly or indirectly regulated by -adrenergic mechanisms.Dedicated to Professor Wolfgang Bargmann on the occasion of his 70th birthday.  相似文献   

11.
Summary In the cichlid teleost Tilapia leucosticta, the origin and linear development of synaptic ribbons in retinal receptor cells have been studied. First ribbons are invariably found close to their future synaptic sites between two dendritic invaginations. They are then clearly shorter than at later stages and appear bifurcate, or of bulb or drop shape. From these precursors typical ribbons rapidly develop, and these vary considerably in length. From a shift in length distribution, a main growth phase can be detected which takes place at the time when the retina first becomes functional. Similar observations were made in Xenopus. Placing Tilapia larvae in conditions of 24 h continuous light had no effect on ribbon growth, while 24 h of continuous darkness resulted in a prevalence of shorter ribbons. Thus the growth of synaptic ribbons in the course of retinal development appears to be subject to modification by environmental light conditions.  相似文献   

12.
Summary Synaptic ribbons in photoreceptor cells of the goldfish pineal organ undergo significant daily changes in their length, distance from the plasma membrane, and number per unit area of pineal end-vesicle. The rhythms persist in fish exposed to constant darkness. Constant light abolishes the rhythms in length and distance of synaptic ribbons from the plasmalemma, but has little effect on numerical changes over a 24-h cycle. These findings suggest that synaptic ribbons in the pineal organ of lower vertebrates might be useful as indicators of metabolic activity.  相似文献   

13.
A study is made of the number of pineal gland synaptic ribbons in 35 male Wistar rats over a 24-hour period during the months of September and February, in correlation to the serum melatonin levels during the same periods and photophases. The results of the study confirm those reported by others authors and suggest that the synaptic ribbons may be the stimuli-transmitting organs facilitating pineal secretory function.  相似文献   

14.
The vanilloid receptor type 1 (TRPV1/VR1) is a non-specific calcium-permeable ionotropic cation channel expressed in the peripheral sensory system as well as in the central nervous system. An endogenous ligand for TRPV1 is arachidonoyl ethanolamide (anandamide), which also activates the metabotropic cannabinoid receptor 1 (CB1). Previous studies in this laboratory reported CB1 receptors and CB1-mediated effects on voltage-gated currents in goldfish cones and bipolar cells. In this study, we show TRPV1-like-immunoreactivity (TRPV1-L-IR) by immunoblot analysis of goldfish retina and rat brain homogenates with a guinea pig polyclonal antibody against the C-terminus of the rat TRPV1. Light-level immunocytochemistry showed restriction of the guinea pig-TRPV1 antibody to a very narrow band in the outer plexiform layer in goldfish and zebrafish retinas. However, no immunoreactivity was detected using rabbit-polyclonal antibodies against the C or N-termini of the rat TRPV1. Pre and post-embedding electron microscopy (EM) immunocytochemistry revealed that TRPV1-L-IR (using the guinea pig antibody) was restricted to synaptic ribbons of all cones and many rods, but never was observed at the synaptic ribbons of bipolar cells. While pre-embedded tissue showed diffuse label associated only with photoreceptor-synaptic ribbons, analysis of post-embedded tissue showed label tightly restricted to synaptic ribbons of all cones and many rods. Oblique sections showed that immunogold particles were confined to the outer electron dense region of the ribbons, with few or no gold particles in the ribbon core or associated with tethers or vesicles. Although TRPV1-L-IR described here, does not necessarily represent TRPV1 antigen associated with synaptic ribbons, these data provide an unequivocal label with which to study the functional dynamics of ribbon formation and degradation in teleost photoreceptors.  相似文献   

15.
Summary Circadian morphological variations of pinealocytes in the superficial pineal of the Chinese hamster (Cricetulus griseus) were studied using quantitative electron-microscopic techniques. The volume of the nucleus and cytoplasm of pinealocytes exhibited similar circadian variations, with the maximum around the middle of the light period and the minimum during the first half of the dark period. Synaptic ribbons in pinealocytes were classified into three groups, type-1, –2 and –3 synaptic ribbons, which appeared as rods, round or irregular bodies and ring-shaped structures, respectively; a synaptic ribbon index was determined for the respective types. The synaptic ribbon index was expressed as the number of synaptic ribbons in the pinealocyte profile representing the cell size. The type-1 synaptic ribbon index, which was smallest during the second half of the light period, was increased during the dark period. The length of straight or slightly curved rods showed a 24-h change similar to that of the type-1 synaptic ribbon index; the length of the rods was maximal during the first half of the dark period and minimal at the end of the light period. There was no apparent circadian variation in the type-2 synaptic ribbon index. The type-3 synaptic ribbon index was higher during the light period than during the dark period; the index attained zero 3h after the onset of darkness and, thereafter, increased gradually.  相似文献   

16.
Previous studies have shown that the functionally enigmatic pineal "synaptic" ribbons are structurally a heterogeneous group of organelles consisting of rodlike ribbons sensu stricto, spherules, and intermediate forms. As ribbons and spherules react differently under various experimental conditions, these organelles were studied qualitatively and quantitatively during the postnatal period in guinea pigs. It was found that the pinealocytes were highly differentiated at birth and contained all three forms of "synaptic" structures. Ribbons and intermediate forms were more abundant than spherules and exhibited a striking increase in number on postnatal days 1 and 2; this increase was followed by a distinct trough and by a second peak at days 12 and 13, after which their numbers declined to reach adult levels by day 20. The spherules were small in number at birth and did not show the large immediate postnatal increase observed for the ribbons and intermediate forms. Instead there was a steady numerical increase up to day 12 (absolute number) or day 15 (relative numbers), followed by a decrease to adult level by day 20. Whereas during the early postnatal period (days 1 to 3) the majority of pinealocytes were characterized by ribbons and intermediate forms, with increasing age spherule-bearing pinealocytes increased in number. As ribbons and spherules were usually not found in the same pinealocyte, the present findings are interpreted to mean that ribbons and spherules characterize different types of pinealocytes showing an inverse numerical development postnatally. Developmentally intermediate forms behave like ribbons.  相似文献   

17.
王艺磊  郑微云 《动物学报》1994,40(2):119-124
对真鲷光感受细胞的超微结构进行观察,结果表明:视杆外段膜盘为游离膜盘,视锥外段膜盘则为连续的膜结构,视锥和视杆均含有连接纤毛和辅助外段。花萼状突起起源于内段。椭体内充满线粒体,无球状小体。双锥椭圆体并生膜为六层,视锥内段无鳍状突起,视锥突触带,在明适应视网膜中数量增多,在暗适应视网中数量减少,视杆突触带在这两种适应网膜中数量不变,每一杆小球只有一个突触带,而锥小足有4-6个突触带。  相似文献   

18.
19.
In the retina of chimaeric mice of rd and wild-type genotypic combination, selective loss of rd/rd photoreceptor cells, after initial development, leads to a mosaic retina with variable amounts of normal photoreceptor cells present over the retinal surface. In some of the rod terminals of these retinas the synaptic complexes with the second order retinal neurons are seen to contain multiple synaptic ribbons and an increased number of profiles of the postsynaptic elements. These changes are observed only in the rod terminals and not in the cone pedicles. Computer aided three-dimensional reconstruction of the altered synapses shows that these changes result from an increase in the number of synaptic sites, characterized by multiplication of the synaptic ribbons and enlargement of the second order neuronal processes. A quantitative analysis of such synapses, based on serial electron micrographs, shows that these are most frequently located in the retinal regions of the chimaeric individuals that have suffered maximum photoreceptor cell loss. Thus synaptic growth appears to take place as a reaction to the reduction of afferent input to the postsynaptic components. These findings demonstrate persistent synaptic plasticity in the rod terminals of mammalian retina during the maturational phase of late postnatal development. Compensatory synaptic growth in the rod terminals, as recorded here, can have important implications for the maintenance of visual sensitivity in the diseased or ageing retina.  相似文献   

20.
Summary The three-dimensional structure of synaptic ribbons in photoreceptor cells of the frog retina was studied with freeze-etching and freeze-substitution methods, combined with a rapid-freezing technique. Although the synaptic ribbon consisted of two electron-dense plaques bisected by an electron-lucent layer in conventional thin sections, such lamellar nature was not so evident in freeze-etched replicas. The cytoplasmic surfaces of the synaptic ribbon presented an extremely regular arrangements of small particles 4–6 nm in diameter. Fine filaments 8–10 nm in diameter and 30–50 nm in length connected synaptic vesicles and the ribbon surface. These connections were mediated by large particles on both ends of the filaments. Approximately 3–5 filaments attached to one synaptic vesicle. Synaptic ribbons were anchored to a characteristic meshwork underlying the presynaptic membrane via another group of similar fine filaments. The meshwork seemed to be an etched replicated image of the presynaptic archiform density observed in thin sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号