首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
While it has been established that a number of microenvironment components can affect the likelihood of metastasis, the link between microenvironment and tumor cell phenotypes is poorly understood. Here we have examined microenvironment control over two different tumor cell motility phenotypes required for metastasis. By high-resolution multiphoton microscopy of mammary carcinoma in mice, we detected two phenotypes of motile tumor cells, different in locomotion speed. Only slower tumor cells exhibited protrusions with molecular, morphological, and functional characteristics associated with invadopodia. Each region in the primary tumor exhibited either fast- or slow-locomotion. To understand how the tumor microenvironment controls invadopodium formation and tumor cell locomotion, we systematically analyzed components of the microenvironment previously associated with cell invasion and migration. No single microenvironmental property was able to predict the locations of tumor cell phenotypes in the tumor if used in isolation or combined linearly. To solve this, we utilized the support vector machine (SVM) algorithm to classify phenotypes in a nonlinear fashion. This approach identified conditions that promoted either motility phenotype. We then demonstrated that varying one of the conditions may change tumor cell behavior only in a context-dependent manner. In addition, to establish the link between phenotypes and cell fates, we photoconverted and monitored the fate of tumor cells in different microenvironments, finding that only tumor cells in the invadopodium-rich microenvironments degraded extracellular matrix (ECM) and disseminated. The number of invadopodia positively correlated with degradation, while the inhibiting metalloproteases eliminated degradation and lung metastasis, consistent with a direct link among invadopodia, ECM degradation, and metastasis. We have detected and characterized two phenotypes of motile tumor cells in vivo, which occurred in spatially distinct microenvironments of primary tumors. We show how machine-learning analysis can classify heterogeneous microenvironments in vivo to enable prediction of motility phenotypes and tumor cell fate. The ability to predict the locations of tumor cell behavior leading to metastasis in breast cancer models may lead towards understanding the heterogeneity of response to treatment.  相似文献   

2.
3.
研究表明,肿瘤转移是恶性肿瘤的临床治疗失败的根本原因。肿瘤转移不仅取决于肿瘤细胞自身的特性,还涉及其与肿瘤酸性微环境之间的相互作用。肿瘤微环境构成非常复杂,可促进肿瘤的增生、转移、侵袭,以及逃避宿主免疫监视和治疗耐药性。肿瘤细胞的生存依赖于在酸性微环境条件下的适应,肿瘤细胞可以通过一些离子交换体维持酸性微环境,缺氧的肿瘤组织酸化可以释放蛋白酶如纤维蛋白酶及MMPs降解细胞外基质、上调VEGF基因表达促进肿瘤新生血管生成等促进肿瘤侵袭转移。近年来,影响肿瘤微环境的因素已经成为癌症研究领域中的新兴话题。  相似文献   

4.
嵌合抗原受体T细胞免疫疗法(CAR-T疗法)是一种治疗肿瘤的新免疫疗法,通过向患者自身T细胞中导入已被修饰的CAR基因,使T细胞表达结合肿瘤表面抗原的特异性受体来实现对肿瘤的精准治疗.目前已发展到第四代.该免疫疗法在血液瘤和实体瘤治疗中都有一定疗效,同时也存在一些待解决难题.本文就近年来CAR-T在血液瘤和实体瘤中的研究治疗进展及存在的问题进行综述.  相似文献   

5.
6.
Cell culture has been traditionally carried out on bi-dimensional (2D) substrates where cells adhere using ventral receptors to the biomaterial surface. However in vivo, most of the cells are completely surrounded by the extracellular matrix (ECM), resulting in a three-dimensional (3D) distribution of receptors. This may trigger differences in the outside-in signaling pathways and thus in cell behavior.This article shows that stimulating the dorsal receptors of cells already adhered to a 2D substrate by overlaying a film of a new material (a sandwich-like culture) triggers important changes with respect to standard 2D cultures. Furthermore, the simultaneous excitation of ventral and dorsal receptors shifts cell behavior closer to that found in 3D environments. Additionally, due to the nature of the system, a sandwich-like culture is a versatile tool that allows the study of different parameters in cell/material interactions, e.g., topography, stiffness and different protein coatings at both the ventral and dorsal sides. Finally, since sandwich-like cultures are based on 2D substrates, several analysis procedures already developed for standard 2D cultures can be used normally, overcoming more complex procedures needed for 3D systems.  相似文献   

7.
细胞衰老与肿瘤治疗   总被引:1,自引:0,他引:1  
人口老龄化是全世界都面临的重大挑战,随着老年人口的增加,肿瘤等衰老相关疾病发病率随之升高.流行病学调查结果显示,大约2/3的新增肿瘤患者为65岁以上的老年人,并且这一比例在不断攀升.细胞衰老是指在DNA损伤或癌基因失调等一系列条件下引起的稳定的细胞周期阻滞,并伴有形态、生化及表观遗传的改变.大量研究证明细胞衰老对抑制潜在癌细胞增殖具有重要作用.然而,目前研究认为除了抑制肿瘤发生,细胞衰老也可能促进肿瘤的演进,细胞衰老对肿瘤发挥了双刃剑作用.因此,深入了解细胞衰老与肿瘤之间的联系,充分利用细胞衰老对肿瘤抑制功能,规避其对肿瘤的促进作用可为肿瘤的治疗提供更多可能的选择.  相似文献   

8.
癌症仍然是现阶段威胁人类健康的一大难题,随着医学的发展,癌症治疗方法除传统方法:手术、放疗、化疗,还可以采用免疫疗法。目前,癌症免疫疗法受到广泛关注,但在应用方面具有许多局限性,如 PD-1/PD-L1 抑制剂,在应用的过程中会出现获得性耐药现象,因此细胞免疫疗法(chimeric antigen receptor T cell, CAR-T) 应运而生,成为弥补免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)和单克隆抗体药物缺陷的新兴治疗方式,简要介绍了 CAR-T 免疫疗法的产生、应用及对 TME 相关靶点的研究进展,为后续研究提供一定的思路。  相似文献   

9.
癌症仍然是现阶段威胁人类健康的一大难题,随着医学的发展,癌症治疗方法除传统方法:手术、放疗、化疗,还可以采用免疫疗法。目前,癌症免疫疗法受到广泛关注,但在应用方面具有许多局限性,如 PD-1/PD-L1 抑制剂,在应用的过程中会出现获得性耐药现象,因此细胞免疫疗法(chimeric antigen receptor T cell, CAR-T) 应运而生,成为弥补免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)和单克隆抗体药物缺陷的新兴治疗方式,简要介绍了 CAR-T 免疫疗法的产生、应用及对 TME 相关靶点的研究进展,为后续研究提供一定的思路。  相似文献   

10.
The human immune response to influenza vaccination depends in part on preexisting cross-reactive (heterosubtypic) immunity from previous infection by, and/or vaccination with, influenza strains that share antigenic determinants with the vaccine strains. However, current methods for assessing heterosubtypic antibody responses against influenza, including the hemagglutination-inhibition (HAI) assay and ELISA, are time and labor intensive, and require moderate amounts of serum and reagents. To address these issues we have developed a fluorescent multiplex assay, mPlex-Flu, that rapidly and simultaneously measures strain specific IgG, IgA, and IgM antibodies against influenza hemagglutinin (HA) from multiple viral strains. We cloned, expressed and purified HA proteins from 12 influenza strains, and coupled them to multiplex beads. Assay validation showed that minimal sample volumes (<5 μl of serum) were needed, and the assay had a linear response over a four Log10 range. The assay detected nanogram levels of anti-influenza specific antibodies, had high accuracy and reproducibility, with an average percentage coefficient of variation (%CV) of 9.06 for intra-assay and 12.94 for inter-assay variability. Pre- and post-intramuscular trivalent influenza vaccination levels of virus specific Ig were consistent with HAI titer and ELISA measurements. A significant advantage of the mPLEX-Flu assay over the HAI assay is the ability to perform antigenic cartography, determining the antigenic distances between influenza HA’s, without mathematical correction for HAI data issues. For validation we performed antigenic cartography on 14 different post-influenza infection ferret sera assayed against 12 different influenza HA’s. Results were in good agreement with a phylogenetic tree generated from hierarchical clustering of the genomic HA sequences. This is the first report of the use of a multiplex method for antigenic cartography using ferret sera. Overall, the mPlex-Flu assay provides a powerful tool to rapidly assess the influenza antibody repertoire in large populations and to study heterosubtypic immunity induced by influenza vaccination.  相似文献   

11.
自Raf激酶被证明为逆转录病毒致癌基因的产物以来,逐渐成为人们研究的热点。研究表明,Raf激酶既是Ras的效应物,又能作为ERK信号通路中的重要组分,成为活化的Ras和ERK之间的一个重要纽带。Ras-Raf-MEK-ERK信号通路参与了细胞增殖、分化和凋亡等生物学过程。作为这一信号通路上的节点蛋白,Raf激酶在肿瘤发生过程中起着关键作用。Raf家族成员Raf-1(cRaf)在调控细胞运动和凋亡过程中发挥关键作用,它既可以通过抑制促凋亡激酶ASK1和MST2活性来抑制细胞凋亡,也可以通过激活Rok-α的活性来促进细胞迁移。该文主要综述了Raf-1激酶的调控机制及其在肿瘤发生过程中的作用,同时也总结了以Raf-1为靶点的肿瘤治疗的最新进展。  相似文献   

12.
二维过渡金属碳/氮化物(MXenes)具有优异的光热转换性能,丰富的表面基团,良好的生物相容性、亲水性和粒径可调性,这使得应用MXenes作为肿瘤诊疗过程中的治疗剂和造影剂具有巨大潜力。本文综述了基于MXenes的肿瘤单一治疗和联合治疗的相关研究,同时介绍了MXenes在肿瘤主动靶向治疗领域的研究,最后阐述了目前MXenes在制备和肿瘤治疗研究中存在的挑战和对未来的展望。  相似文献   

13.
14.
ObjectiveThe aim of this study was to characterize response to photodynamic therapy (PDT) in a mouse cancer model using a multi-parametric quantitative MRI protocol and to identify MR parameters as potential biomarkers for early assessment of treatment outcome.MethodsCT26.WT colon carcinoma tumors were grown subcutaneously in the hind limb of BALB/c mice. Therapy consisted of intravenous injection of the photosensitizer Bremachlorin, followed by 10 min laser illumination (200 mW/cm2) of the tumor 6 h post injection. MRI at 7 T was performed at baseline, directly after PDT, as well as at 24 h, and 72 h. Tumor relaxation time constants (T1 and T2) and apparent diffusion coefficient (ADC) were quantified at each time point. Additionally, Gd-DOTA dynamic contrast-enhanced (DCE) MRI was performed to estimate transfer constants (Ktrans) and volume fractions of the extravascular extracellular space (ve) using standard Tofts-Kermode tracer kinetic modeling. At the end of the experiment, tumor viability was characterized by histology using NADH-diaphorase staining.ResultsThe therapy induced extensive cell death in the tumor and resulted in significant reduction in tumor growth, as compared to untreated controls. Tumor T1 and T2 relaxation times remained unchanged up to 24 h, but decreased at 72 h after treatment. Tumor ADC values significantly increased at 24 h and 72 h. DCE-MRI derived tracer kinetic parameters displayed an early response to the treatment. Directly after PDT complete vascular shutdown was observed in large parts of the tumors and reduced uptake (decreased Ktrans) in remaining tumor tissue. At 24 h, contrast uptake in most tumors was essentially absent. Out of 5 animals that were monitored for 2 weeks after treatment, 3 had tumor recurrence, in locations that showed strong contrast uptake at 72 h.ConclusionDCE-MRI is an effective tool for visualization of vascular effects directly after PDT. Endogenous contrast parameters T1, T2, and ADC, measured at 24 to 72 h after PDT, are also potential biomarkers for evaluation of therapy outcome.  相似文献   

15.
Experiments with young and aged mice support the concept that the reticular stroma of the spleen, possibly interacting with other humoral factors, is essential for the expression of immunocompetent precursors directed towards the production of 7S antibody.  相似文献   

16.
色素上皮衍生因子(pigment epithelium—defived factor,PEDF)是一种具有神经营养保护、抑制新生血管增生和抑制肿瘤生长等作用的多功能蛋白质。体内外试验证明,PEDF通过抑制新生血管生成、诱导肿瘤细胞分化和抑制肿瘤细胞增殖及迁移等多个环节抑制肿瘤的生长,成为治疗肿瘤的候选药物。  相似文献   

17.
复杂的肿瘤微环境导致抗肿瘤药物在肿瘤组织内递送效率低下,严重阻碍了药物对浅表肿瘤的治疗效果。生物相容透皮给药微针凭借较高的机械强度,刺穿皮肤角质层,将微针内的药物递送至浅表肿瘤组织内,提高生物利用度,改善静脉注射、口服给药的肝肾毒性等问题。本文介绍了生物相容透皮给药微针的设计及其在癌症化疗、光动力治疗、光热治疗、免疫治疗、基因治疗等领域的研究进展,对浅表肿瘤的微创、局部递药和精准、高效治疗具有重要指导意义。  相似文献   

18.
目的:评价粒细胞-巨噬细胞集落刺激因子(GM—csF)微球剂型在肿瘤动物模型治疗作用。方法:建立肿瘤动物模型,微球剂型对该肿瘤模型治疗效果考察及毒性评价,同时与市售的注射水溶液剂型进行比较。结果:微球剂型和市售水溶液注射剂型同剂量对肿瘤模型治疗效果,微球剂型的效果明显好于市售的;同时微球剂型的毒性也小于市售的。结论:粒细胞-巨噬细胞集落刺激因子微球能提高GM—CSF治疗效果,同时降低毒性。  相似文献   

19.
Tumor-infiltrating lymphocytes (TIL) has been associated with improved survival in cancer patients. Within the tumor microenvironment, regulatory cells and expression of co-inhibitory immune checkpoint molecules can lead to the inactivation of TIL. Hence, there is a need to develop strategies that disrupt these negative regulators to achieve robust anti-tumor immune responses. We evaluated the blockade of immune checkpoints and their effect on T cell infiltration and function. We examined the ability of TIL to induce tumor-specific immune responses in vitro and in vivo. TIL isolated from tumor bearing mice were tumor-specific and expressed co-inhibitory immune checkpoint molecules. Administration of monoclonal antibodies against immune checkpoints led to a significant delay in tumor growth. However, anti-PD-L1 antibody treated mice had a significant increase in T cell infiltration and IFN-γ production compared to other groups. Adoptive transfer of in vitro expanded TIL from tumors of anti-PD-L1 antibody treated mice led to a significant delay in tumor growth. Blockade of co-inhibitory immune checkpoints could be an effective strategy to improve TIL infiltration and function.  相似文献   

20.
Transplantation models using human brain tumor cells have served an essential function in neuro-oncology research for many years. In the past, the most commonly used procedure for human tumor xenograft establishment consisted of the collection of cells from culture flasks, followed by the subcutaneous injection of the collected cells in immunocompromised mice. Whereas this approach still sees frequent use in many laboratories, there has been a significant shift in emphasis over the past decade towards orthotopic xenograft establishment, which, in the instance of brain tumors, requires tumor cell injection into appropriate neuroanatomical structures. Because intracranial xenograft establishment eliminates the ability to monitor tumor growth through direct measurement, such as by use of calipers, the shift in emphasis towards orthotopic brain tumor xenograft models has necessitated the utilization of non-invasive imaging for assessing tumor burden in host animals. Of the currently available imaging methods, bioluminescence monitoring is generally considered to offer the best combination of sensitivity, expediency, and cost. Here, we will demonstrate procedures for orthotopic brain tumor establishment, and for monitoring tumor growth and response to treatment when testing experimental therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号