首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
3.
4.
5.
With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm’s body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode’s body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode.  相似文献   

6.
7.
C. elegans has long been used as an experimentally tractable organism for discovery of fundamental mechanisms that underlie metazoan cellular function, development, neurobiology, and behavior. C. elegans has more recently been exploited to study the interplay of environment and genetics on lipid storage pathways. As an experimental platform, C. elegans is amenable to an extensive array of forward and reverse genetic, a variety of “omics” and anatomical approaches that together allow dissection of complex physiological pathways. This is particularly relevant to the study of fat biology, as energy balance is ultimately an organismal process that involves behavior, nutrient digestion, uptake and transport, as well as a variety of cellular activities that determine the balance between lipid storage and utilization. C. elegans offers the opportunity to dissect these pathways and various cellular and organismal homeostatic mechanisms in the context of a genetically tractable, intact organism.  相似文献   

8.
9.
10.
11.
12.
13.
14.
To determine whether the distinctive features of Caenorhabditis elegans chromosomal organization are shared with the C. briggsae genome, we constructed a single nucleotide polymorphism–based genetic map to order and orient the whole genome shotgun assembly along the six C. briggsae chromosomes. Although these species are of the same genus, their most recent common ancestor existed 80–110 million years ago, and thus they are more evolutionarily distant than, for example, human and mouse. We found that, like C. elegans chromosomes, C. briggsae chromosomes exhibit high levels of recombination on the arms along with higher repeat density, a higher fraction of intronic sequence, and a lower fraction of exonic sequence compared with chromosome centers. Despite extensive intrachromosomal rearrangements, 1:1 orthologs tend to remain in the same region of the chromosome, and colinear blocks of orthologs tend to be longer in chromosome centers compared with arms. More strikingly, the two species show an almost complete conservation of synteny, with 1:1 orthologs present on a single chromosome in one species also found on a single chromosome in the other. The conservation of both chromosomal organization and synteny between these two distantly related species suggests roles for chromosome organization in the fitness of an organism that are only poorly understood presently.  相似文献   

15.
Lifespan among individuals ranges widely in organisms from yeast to mammals, even in an isogenic cohort born in a nearly uniform environment. Needless to say, genetic and environmental factors are essential for aging and lifespan, but in addition, a third factor or the existence of a stochastic element must be reflected in aging and lifespan. An essential point is that lifespan or aging is an unpredictable phenomenon. The present study focuses on elucidating the biophysical and biological meanings of healthspan that latently indwells a stochastic nature. To perform this purpose, the nematode Caenorhabditis elegans served as a model animal. C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. Then, utilizing this phenomenon, we clarified a mechanism of healthspan extension by measuring the single-worm ATP and estimating the ATP noise (or the variability of the ATP content) among individual worms and by quantitatively analyzing biodemographic data with the lifespan equation that was derived from a fluctuation theory.  相似文献   

16.
17.
18.
19.
This study examined the influence of shell shape on the distribution and movement patterns of three species of Hawaiian hermit crabs: Calcinus elegans, C. laevimanus, and C. latens. Field surveys showed strong differences in shell use depending on habitat. Individuals of C.elegans and C. latens were more frequently in unusual shapes of shells (the cowrie Cypraea caputserpentis and the variable worm shell Serpulorbis variabilis) when in tide pools and in more standard gastropod shells, such as the dog whelk Nassarius papillosus, when found in the subtidal. In addition, for both C.elegans and C. latens in tide pools, most crabs in unusual shaped shells were out on top of rocks, whereas most crabs in shells that were standard shapes were under rocks.In the laboratory, individuals of C.elegans and C. laevimanus in unusual shells initiated more shell exchanges and when given empty shells crabs readily occupied the standard shaped shells, but crabs did not move into the unusual shaped shells. Mark-recapture experiments in the field showed that C. elegans in standard shaped shells moved out of tide pools and stayed longer when placed on subtidal coral heads, whereas crabs in unusual shaped shells stayed in tide pools and did not stay on subtidal coral heads (in part due to predation). Laboratory tests showed that C. elegans in unusual shaped shells were more readily dislodged by surge than crabs in standard shaped shells. Thus, the difference in movement patterns in preferred vs. unpreferred shell shapes is an important factor influencing the microhabitat distribution of these hermit crabs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号