首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Perception involves two types of decisions about the sensory world: identification of stimulus features as analog quantities, or discrimination of the same stimulus features among a set of discrete alternatives. Veridical judgment and categorical discrimination have traditionally been conceptualized as two distinct computational problems. Here, we found that these two types of decision making can be subserved by a shared cortical circuit mechanism. We used a continuous recurrent network model to simulate two monkey experiments in which subjects were required to make either a two-alternative forced choice or a veridical judgment about the direction of random-dot motion. The model network is endowed with a continuum of bell-shaped population activity patterns, each representing a possible motion direction. Slow recurrent excitation underlies accumulation of sensory evidence, and its interplay with strong recurrent inhibition leads to decision behaviors. The model reproduced the monkey's performance as well as single-neuron activity in the categorical discrimination task. Furthermore, we examined how direction identification is determined by a combination of sensory stimulation and microstimulation. Using a population-vector measure, we found that direction judgments instantiate winner-take-all (with the population vector coinciding with either the coherent motion direction or the electrically elicited motion direction) when two stimuli are far apart, or vector averaging (with the population vector falling between the two directions) when two stimuli are close to each other. Interestingly, for a broad range of intermediate angular distances between the two stimuli, the network displays a mixed strategy in the sense that direction estimates are stochastically produced by winner-take-all on some trials and by vector averaging on the other trials, a model prediction that is experimentally testable. This work thus lends support to a common neurodynamic framework for both veridical judgment and categorical discrimination in perceptual decision making.  相似文献   

3.
海马-前额叶神经回路与工作记忆   总被引:1,自引:0,他引:1  
学习和记忆是神经科学研究的热点。已证实大脑中的海马、前额叶和海马−前额叶回路均参与工作记忆功能。本文对海马−前额叶回路的解剖和生理特性以及海马、前额叶和海马−前额叶回路在工作记忆中的作用的研究进展做一概述。  相似文献   

4.
《Current biology : CB》2020,30(23):4789-4798.e4
  1. Download : Download high-res image (230KB)
  2. Download : Download full-size image
  相似文献   

5.
6.
《Current biology : CB》2020,30(19):3749-3760.e3
  1. Download : Download high-res image (104KB)
  2. Download : Download full-size image
  相似文献   

7.
Modulation of interactions among neurons can manifest as dramatic changes in the state of population dynamics in cerebral cortex. How such transitions in cortical state impact the information processing performed by cortical circuits is not clear. Here we performed experiments and computational modeling to determine how somatosensory dynamic range depends on cortical state. We used microelectrode arrays to record ongoing and whisker stimulus-evoked population spiking activity in somatosensory cortex of urethane anesthetized rats. We observed a continuum of different cortical states; at one extreme population activity exhibited small scale variability and was weakly correlated, the other extreme had large scale fluctuations and strong correlations. In experiments, shifts along the continuum often occurred naturally, without direct manipulation. In addition, in both the experiment and the model we directly tuned the cortical state by manipulating inhibitory synaptic interactions. Our principal finding was that somatosensory dynamic range was maximized in a specific cortical state, called criticality, near the tipping point midway between the ends of the continuum. The optimal cortical state was uniquely characterized by scale-free ongoing population dynamics and moderate correlations, in line with theoretical predictions about criticality. However, to reproduce our experimental findings, we found that existing theory required modifications which account for activity-dependent depression. In conclusion, our experiments indicate that in vivo sensory dynamic range is maximized near criticality and our model revealed an unanticipated role for activity-dependent depression in this basic principle of cortical function.  相似文献   

8.
9.
10.
11.
Gain modulation is a key feature of neural information processing, but underlying mechanisms remain unclear. In single neurons, gain can be measured as the slope of the current-frequency (input-output) relationship over any given range of inputs. While much work has focused on the control of basal firing rates and spike rate adaptation, gain control has been relatively unstudied. Of the limited studies on gain control, some have examined the roles of synaptic noise and passive somatic currents, but the roles of voltage-gated channels present ubiquitously in neurons have been less explored. Here, we systematically examined the relationship between gain and voltage-gated ion channels in a conductance-based, tonically-active, model neuron. Changes in expression (conductance density) of voltage-gated channels increased (Ca2+ channel), reduced (K+ channels), or produced little effect (h-type channel) on gain. We found that the gain-controlling ability of channels increased exponentially with the steepness of their activation within the dynamic voltage window (voltage range associated with firing). For depolarization-activated channels, this produced a greater channel current per action potential at higher firing rates. This allowed these channels to modulate gain by contributing to firing preferentially at states of higher excitation. A finer analysis of the current-voltage relationship during tonic firing identified narrow voltage windows at which the gain-modulating channels exerted their effects. As a proof of concept, we show that h-type channels can be tuned to modulate gain by changing the steepness of their activation within the dynamic voltage window. These results show how the impact of an ion channel on gain can be predicted from the relationship between channel kinetics and the membrane potential during firing. This is potentially relevant to understanding input-output scaling in a wide class of neurons found throughout the brain and other nervous systems.  相似文献   

12.
Cortical control of neuroprosthetic devices is known to require neuronal adaptations. It remains unclear whether a stable cortical representation for prosthetic function can be stored and recalled in a manner that mimics our natural recall of motor skills. Especially in light of the mixed evidence for a stationary neuron-behavior relationship in cortical motor areas, understanding this relationship during long-term neuroprosthetic control can elucidate principles of neural plasticity as well as improve prosthetic function. Here, we paired stable recordings from ensembles of primary motor cortex neurons in macaque monkeys with a constant decoder that transforms neural activity to prosthetic movements. Proficient control was closely linked to the emergence of a surprisingly stable pattern of ensemble activity, indicating that the motor cortex can consolidate a neural representation for prosthetic control in the presence of a constant decoder. The importance of such a cortical map was evident in that small perturbations to either the size of the neural ensemble or to the decoder could reversibly disrupt function. Moreover, once a cortical map became consolidated, a second map could be learned and stored. Thus, long-term use of a neuroprosthetic device is associated with the formation of a cortical map for prosthetic function that is stable across time, readily recalled, resistant to interference, and resembles a putative memory engram.  相似文献   

13.
Summary— A behavioral treatment for overeating, utilizing operant and respondent conditioning techniques is described. To date, all eight patients with whom this treatment has been employed have been successfully treated and no negative secondary reactions have been observed.  相似文献   

14.

Background/Objective

Transcutaneous electrical stimulation has been proven to modulate nervous system activity, leading to changes in pain perception, via the peripheral sensory system, in a bottom up approach. We tested whether different sensory behavioral tasks induce significant effects in pain processing and whether these changes correlate with cortical plasticity.

Methodology/Principal Findings

This randomized parallel designed experiment included forty healthy right-handed males. Three different somatosensory tasks, including learning tasks with and without visual feedback and simple somatosensory input, were tested on pressure pain threshold and motor cortex excitability using transcranial magnetic stimulation (TMS). Sensory tasks induced hand-specific pain modulation effects. They increased pain thresholds of the left hand (which was the target to the sensory tasks) and decreased them in the right hand. TMS showed that somatosensory input decreased cortical excitability, as indexed by reduced MEP amplitudes and increased SICI. Although somatosensory tasks similarly altered pain thresholds and cortical excitability, there was no significant correlation between these variables and only the visual feedback task showed significant somatosensory learning.

Conclusions/Significance

Lack of correlation between cortical excitability and pain thresholds and lack of differential effects across tasks, but significant changes in pain thresholds suggest that analgesic effects of somatosensory tasks are not primarily associated with motor cortical neural mechanisms, thus, suggesting that subcortical neural circuits and/or spinal cord are involved with the observed effects. Identifying the neural mechanisms of somatosensory stimulation on pain may open novel possibilities for combining different targeted therapies for pain control.  相似文献   

15.
16.
With the consideration of mechanism of prevention and control for the spread of infectious diseases, we propose, in this paper, a state dependent pulse vaccination and medication control strategy for a SIRS type epidemic dynamic system. The sufficient conditions on the existence and orbital stability of positive order-1 or order-2 periodic solution are presented. Numerical simulations are carried out to illustrate the main results and compare numerically the state dependent vaccination strategy and the fixed time pulse vaccination strategy.  相似文献   

17.
Deprivation of one modality can lead to the improvement of other intact modalities. We have previously reported that visual deprivation drives AMPA receptors into synapses from layer4 to 2/3 in the barrel cortex and sharpens functional whisker-barrel map at layer2/3 2 days after the beginning of visual deprivation. Enhanced excitatory synaptic transmission at layer4-2/3 synapses is transient and returns to the base line level a week after the beginning of visual deprivation. Here we found that sharpened whisker-barrel function is maintained at least for a week in visually deprived animals. While increased AMPA receptor-mediated synaptic transmission at layer4-2/3 synapses dropped to the base line a week after the beginning of visual deprivation, lateral inhibitory synaptic transmission onto the neighboring barrel was kept strengthened for a week of visually deprived animals. Thus, transient strengthening of excitatory synapses at layer4-2/3 in the barrel cortex could trigger the enhancement of inhibitory inputs to neighboring barrel, and sustained lateral inhibition can maintain the sharpening of whisker-barrel map in visually deprived animals.  相似文献   

18.
In mechanical disuse conditions associated with immobilization and microgravity in spaceflight, cortical endosteal surface moved outward with periosteal surface moving slightly or unchanged, resulting in reduction of cortical thickness. Reduced thickness of the shaft cortex of long bone can be considered as an independent predictor of fractures. Accordingly, it is important to study the remodeling process at cortical endosteal surface. This paper presents a computer simulation of cortical endosteal remodeling induced by mechanical disuse at the Basic Multicellular Units level with cortical thickness as controlling variables. The remodeling analysis was performed on a representative rectangular slice of the cross section of cortical bone volume. The pQCT data showing the relationship between the duration of paralysis and bone structure of spinal cord injured patients by Eser et al. (2004) were used as an example of mechanical disuse to validate the model. Cortical thickness, BMU activation frequency, mechanical load and principal compressive strain for tibia and femur cortical models were simulated. The effects of varying the mechanical load and maximum BMU activation frequency were also investigated. The cortical thicknesses of femur and tibia models were both consistent with the clinical data. Varying the decreasing coefficient in mechanical load equation had little effect on the steady state values of cortical thickness and BMU activation frequency. However, it had much effect on the time to reach steady state. The maximum BMU activation frequency had effects on both the steady state value and the time to reach steady state for cortical thickness and BMU activation frequency. The computational model for cortical endosteal surface remodeling developed in this paper can be further used to quantify and predict the effects of mechanical factors and biological factors on cortical thickness and help us to better understand the relationship between bone morphology and mechanical as well as biological environment.  相似文献   

19.
20.
One major unanswered question in neuroscience is how the brain transitions between conscious and unconscious states. General anesthetics offer a controllable means to study these transitions. Induction of anesthesia is commonly attributed to drug-induced global modulation of neuronal function, while emergence from anesthesia has been thought to occur passively, paralleling elimination of the anesthetic from its sites in the central nervous system (CNS). If this were true, then CNS anesthetic concentrations on induction and emergence would be indistinguishable. By generating anesthetic dose-response data in both insects and mammals, we demonstrate that the forward and reverse paths through which anesthetic-induced unconsciousness arises and dissipates are not identical. Instead they exhibit hysteresis that is not fully explained by pharmacokinetics as previously thought. Single gene mutations that affect sleep-wake states are shown to collapse or widen anesthetic hysteresis without obvious confounding effects on volatile anesthetic uptake, distribution, or metabolism. We propose a fundamental and biologically conserved concept of neural inertia, a tendency of the CNS to resist behavioral state transitions between conscious and unconscious states. We demonstrate that such a barrier separates wakeful and anesthetized states for multiple anesthetics in both flies and mice, and argue that it contributes to the hysteresis observed when the brain transitions between conscious and unconscious states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号