首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies have established that chlorpyrifos (CPS), fipronil, and nonane can all be metabolized by human liver microsomes (HLM) and a number of cytochrome P450 (CYP) isoforms. However, metabolic interactions between these three substrates have not been described. In this study the effect of either coincubation or preincubation of CPS with HLM or CYP isoforms with either fipronil or nonane as substrate was investigated. In both co- and preincubation experiments, CPS significantly inhibited the metabolism of fipronil or nonane by HLM although CPS inhibited the metabolism of fipronil more effectively than that of nonane. CPS significantly inhibited the metabolism of fipronil by CYP3A4 as well as the metabolism of nonane by CYP2B6. In both cases, preincubation with CPS caused greater inhibition than coincubation, suggesting that the inhibition is mechanism based.  相似文献   

2.
The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have been measured in human liver microsomes. The three CYP isoenzymes, CYP2E1, CYP1A2 and CYP3A4, have been identified previously as important in the metabolism of this compound. To measure the constants for each isoenzyme, enzyme-specific inhibitory antibodies were used to block the activities for two of the three isoenzymes. CYP2E1 was found to have the lowest K(m), 2.9 microM, and the highest catalytic activity, k(cat). The K(m) for the other isoenzymes, CYP1A2 and CYP3A4, were about 60 microM with lower values of k(cat). Apparent kinetic constants obtained from two microsomal samples that were not inhibited were consistent with these results. In addition, 11 human microsome samples characterized for 10 CYP activities were correlated with the metabolism of 9.7 microM BDCM by each sample; statistical analysis showed a correlation with CYP2E1 activity only. This result is consistent with the finding that CYP2E1 is the only isoenzyme with a K(m) lower than the BDCM concentration used. The kinetic constants obtained from the inhibited microsomes were compared to similar results from recombinant human isoenzyme preparations containing only one CYP isoenzyme. The results for CYP2E1 were very similar, while the results for CYP1A2 were somewhat less similar and there was a substantial divergence for CYP3A4 in the two systems. Possible reasons for these differences are differing levels of CYP reductase and/or differing makeup of the membrane lipid environment for the CYPs. Because of the low levels of BDCM exposure from drinking water, it appears likely that CYP2E1 will dominate hepatic CYP-mediated BDCM metabolism in humans.  相似文献   

3.
The metabolism and covalent binding of 14C-monocrotaline in Sprague–Dawley (SD) rat liver microsomes was investigated using the inducers dexamethasone, clotrimazole, pregnenolone-16α-carbonitrile, and phenobarbital. Monocrotaline is a pyrrolizidine alkaloid (PA) that causes a syndrome in rats that is a model for human primary pulmonary hypertension. It has been documented that bioactivation of PAs (dehydrogenation to reactive pyrroles) in the liver by cytochromes P450 is required for their toxicity. Covalent binding of these reactive pyrroles to tissue macromolecules has been hypothesized to correspond to PA toxicosis. We correlated metabolism and total microsomal covalent binding of 14C-monocrotaline with cytochrome P450 3A using the aforementioned inducers, troleandomycin (a cytochrome P450 3A inhibitor), erythromycin N-demethylase assay of cytochrome P450 3A activity, and Western blots employing anti-rat cytochrome P450 3A antibodies. In addition, autoradiography of membranes electroblotted from SDS-PAGE demonstrated the formation of radiolabeled adducts with specific protein(s). The most intensely radiolabeled protein bands have an apparent molecular weight of ∼52 kDa, which was similar to the molecular weight detected by anti-rat cytochrome P450 3A antibodies in the Western blots. No radiolabeled proteins were detected in microsomes pretreated with troleandomycin. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 157–166, 1998  相似文献   

4.
Cytochrome P450 (CYP) is one of the most important drug‐metabolizing enzyme families, which participates in the biotransformation of many endogenous and exogenous compounds. Quantitative analysis of CYP expression levels is important when studying the efficacy of new drug molecules and assessing drug–drug interactions in drug development. At present, chemical probe‐based assay is the most widely used approach for the evaluation of CYP activity although there are cross‐reactions between the isoforms with high sequence homologies. Therefore, quantification of each isozyme is highly desired in regard to meeting the ever‐increasing requirements for carrying out pharmacokinetics and personalized medicine in the academic, pharmaceutical, and clinical setting. Herein, an absolute quantification method was employed for the analysis of the seven isoforms CYP1A2, 2B6, 3A4, 3A5, 2C9, 2C19, and 2E1 using a proteome‐derived approach in combination with stable isotope dilution assay. The average absolute amount measured from twelve human liver microsomes samples were 39.3, 4.3, 54.0, 4.6, 10.3, 3.0, and 9.3 (pmol/mg protein) for 1A2, 2B6, 3A4, 3A5, 2C9, 2C19, and 2E1, respectively. Importantly, the expression level of CYP3A4 showed high correlation (r = 0.943, p < 0.0001) with the functional activity, which was measured using bufalin—a highly selective chemical probe we have developed. The combination of MRM identification and analysis of the functional activity, as in the case of CYP3A4, provides a protocol which can be extended to other functional enzyme studies with wide application in pharmaceutical research.  相似文献   

5.
Kim KA  Lee JS  Park HJ  Kim JW  Kim CJ  Shim IS  Kim NJ  Han SM  Lim S 《Life sciences》2004,74(22):2769-2779
Oleanolic acid (OA) and ursolic acid (UA), triterpene acids having numerous pharmacological activities including anti-inflammatory, anti-cancer, and hepato-protective effects, were tested for their ability to modulate the activities of several cytochrome P450 (CYP) enzymes using human liver microsomes. OA competitively inhibited CYP1A2-catalyzed phenacetin O-deethylation and CYP3A4-catalyzed midazolam 1-hydroxylation, the major human drug metabolizing CYPs, with IC50 (Ki) values of 143.5 (74.2) microM and 78.9 (41.0) microM, respectively. UA competitively inhibited CYP2C19-catalyzed S-mephenytoin 4'-hydroxylation with an IC50 (Ki) value of 119.7 (80.3) microM. However, other CYPs tested showed no or weak inhibition by both OA and UA. The present study demonstrates that OA and UA have inhibitory effects on CYP isoforms using human liver microsomes. It is thus likely that consumption of herbal medicines containing OA or UA, or administration of OA or UA, can cause drug interactions in humans when used concomitantly with drugs that are metabolized primarily by CYP isoforms. In addition, it appears that the inhibitory effect of OA on CYP1A2 is, in part, related to its anti-inflammatory and anticancer activities.  相似文献   

6.
A sensitive method for the determination of cytochrome P450 (P450 or CYP) 1A activities such as ethoxyresorufin O-deethylase (EROD) and methoxyresorufin O-demethylase (MROD) in liver microsomes from human, monkey, rat and mouse by high-performance liquid chromatography with fluorescence detection is reported. The newly developed method was found to be more sensitive than previous methods using a spectrofluorimeter and fluorescence plate reader. The detection limit for resorufin (signal-to-noise ratio of 3) was 0.80 pmol/assay. Intra-day and inter-day precisions (expressed as relative standard deviation) were less than 6% for both enzyme activities. With this improved sensitivity, the kinetics of EROD and MROD activities in mammalian liver microsomes could be determined more precisely. EROD activities in human and monkey liver microsomes, and MROD activities in liver microsomes from all animal species exhibited a monophasic kinetic pattern, whereas the pattern of EROD activities in rat and mouse liver microsomes was biphasic. In addition, the method could determine the non-inducible and 3-methylcholanthrene-inducible activities of EROD and MROD in rat and mouse liver microsomes under the same assay conditions. Therefore, this method is applicable to in vivo and in vitro studies on the interaction of xenobiotic chemicals with cytochrome CYP1A isoforms in mammals.  相似文献   

7.
The male rabbit liver microsomal cytochrome P450 metabolism of 1-nitropyrene and 3-nitrofluoranthene was investigated. In this study, we used inhibitory antibodies specific for rabbit P450 2C3 and determined that, in untreated male rabbit liver microsomes, the antibody inhibited approximately 75% of the cytochrome P450-mediated C-oxidation of both 1-nitropyrene and 3-nitrofluoranthene. These results verify our previous prediction that mainly one cytochrome P450 is responsible for microsomal metabolism of 1-nitropyrene in the untreated rabbit liver.  相似文献   

8.
The preceding paper (B. Gemzik, D. Greenway, C. Nevins, and A. Parkinson (1992). Regulation of two electrophoretically distinct proteins recognized by antibody against rat liver cytochrome P450 3A1. J. Biochem. Toxicol, 7 (43–52).) described the regulation of two rat liver microsomal proteins (50- and 51-kDa) recognized by antibody against P450 3A1. It was also shown that changes in the levels of the 51-kDa 3A protein were usually paralleled by changes in the rate of testosterone 2β-, 6β-, and 15β-hydroxylation. The present study demonstrates that age- and sex-dependent changes in the 50-kDa protein were paralleled by changes in the rate of digitoxin oxidation to digitoxigenin bisdigitoxoside. Induction or suppression of the 50-kDa protein by treatment of rats with various xenobiotics were also paralleled by changes in the rate of digitoxin oxidation. These results suggest that, contrary to previous assumptions, the conversion of digitoxin to digitoxigenin bisdigitoxoside and the conversion of testosterone to 2β-, 6β- and 15β-hydroxytestosterone are primarily catalyzed by different forms of P450 3A. Further evidence for this coclusion was obtained from studies in which the suicide inhibitor, chloramphenicol, was administered to mature female rats previously treated with pregnenolone-16α-carbonitrile (PCN), which induces both the 50-kDa and the 51-kDa protein. Treatment of mature female rats with PCN alone caused a marked increase (16- to 18-fold) in the 6β-hydroxylation of testosterone and the rate of digitoxin oxidation. Treatment of PCN-induced rats with chloramphenicol caused a ~70% decrease in liver microsomal testosterone 6β-hydroxylation, but had no effect on the rate of conversion of digitoxin to digitoxigenin bisdigitoxoside. The oxidation of testosterone by purified 3A1 (a 51-kDa protein) was also inhibited by chloramphenicol in a time- and reduced nicotinamite adenine dinucleotide phosphate (NADPH)-dependent manner. In addition to testosterone and chloramphenicol, purified 3A1 also metabolized trole-andomycin, but it was unable to convert digitoxin to digitoxigenin bisdigitoxoside. Testosterone inhibited the microsomal oxidation of digitoxin, but digitoxin did not inhibit testosterone oxidation. This suggests that testosterone is a substrate for the 3A enzyme that metabolizes digitoxin, but that this form of P450 3A does not contribute significantly to testosterone oxidation by rat liver microsomes. We propose that the 2SbT-, 6β-, and 15β-hydroxylation of testosterone by rat liver microsomes is primarily catalyzed by the 51-kDa 3A proteins (either 3A1 or 3A2 depending on the source of microsomes), whereas digitoxin oxidation is primarily catalyzed by the 50-kDa protein.  相似文献   

9.
Fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazole-3-carbonitrile) is a highly active, broad spectrum insecticide from the phenyl pyrazole family, which targets the gamma-amino butyric acid (GABA) receptor. Although fipronil is presently widely used as an insecticide and acaricide, little information is available with respect to its metabolic fate and disposition in mammals. This study was designed to investigate the in vitro human metabolism of fipronil and to examine possible metabolic interactions that fipronil may have with other substrates. Fipronil was incubated with human liver microsomes (HLM) and several recombinant cytochrome P450 (CYP) isoforms obtained from BD Biosciences. HPLC was used for metabolite identification and quantification. Fipronil sulfone was the predominant metabolite via CYP oxidation. The K(m) and V(max) values for human liver microsomes are 27.2 microM and 0.11 nmol/mg proteinmin, respectively; for rat liver microsomes (RLM) the K(m) and V(max) are 19.9 microM and 0.39 nmol/mg proteinmin, respectively. CYP3A4 is the major isoform responsible for fipronil oxidation in humans while CYP2C19 is considerably less active. Other human CYP isoforms have minimal or no activity toward fipronil. Co-expression of cytochrome b(5) (b(5)) is essential for CYP3A4 to manifest high activity toward fipronil. Ketoconazole, a specific inhibitor of CYP3A4, inhibits 78% of the HLM activity toward fipronil at a concentration of 2 microM. Oxidative activity toward fipronil in 19 single-donor HLMs correlated well with their ability to oxidize testosterone. The interactions of fipronil and other CYP3A4 substrates, such as testosterone and diazepam, were also investigated. Fipronil metabolism was activated by testosterone in HLM but not in CYP3A4 Supersomes. Testosterone 6beta-hydroxylation in HLM was inhibited by fipronil. Fipronil inhibited diazepam demethylation but had little effect on diazepam hydroxylation. The results suggest that fipronil has the potential to interact with a wide range of xenobiotics or endogenous chemicals that are CYP3A4 substrates and that fipronil may be a useful substrate for the characterization of CYP3A4 in HLM.  相似文献   

10.
Carbofuran is a carbamate pesticide used in agricultural practice throughout the world. Its effect as a pesticide is due to its ability to inhibit acetylcholinesterase activity. Though carbofuran has a long history of use, there is little information available with respect to its metabolic fate and disposition in mammals. The present study was designed to investigate the comparative in vitro metabolism of carbofuran from human, rat, and mouse liver microsomes (HLM, RLM, MLM, respectively), and characterize the specific enzymes involved in such metabolism, with particular reference to human metabolism. Carbofuran is metabolized by cytochrome P450 (CYP) leading to the production of one major ring oxidation metabolite, 3-hydroxycarbofuran, and two minor metabolites. The affinity of carbofuran for CYP enzymes involved in the oxidation to 3-hydroxycarbofuran is significantly less in HLM (Km = 1.950 mM) than in RLM (Km = 0.210 mM), or MLM (Km = 0.550 mM). Intrinsic clearance rate calculations indicate that HLM are 14-fold less efficient in the metabolism of carbofuran to 3-hydroxycarbofuran than RLM or MLM. A screen of 15 major human CYP isoforms for metabolic ability with respect to carbofuran metabolism demonstrated that CYP3A4 is the major isoform responsible for carbofuran oxidation in humans. CYP1A2 and 2C19 are much less active while other human CYP isoforms have minimal or no activity toward carbofuran. In contrast with the human isoforms, members of the CYP2C family in rats are likely to have a primary role in carbofuran metabolism. Normalization of HLM data with the average levels of each CYP in native HLM, indicates that carbofuran metabolism is primarily mediated by CYP3A4 (percent total normalized rate (% TNR) = 77.5), although CYP1A2 and 2C19 play ancillary roles (% TNR = 9.0 and 6.0, respectively). This is substantiated by the fact that ketoconazole, a specific inhibitor of CYP3A4, is an excellent inhibitor of 3-hydroxycarbofuran formation in HLM (IC50: 0.31 μM). Chlorpyrifos, an irreversible non-competitive inhibitor of CYP3A4, inhibits the formation of 3-hydroxycarbofuran in HLM (IC50: 39 μM). The use of phenotyped HLM demonstrated that individuals with high levels of CYP3A4 have the greatest potential to metabolize carbofuran to its major metabolite. The variation in carbofuran metabolism among 17 single-donor HLM samples is over 5-fold and the best correlation between CYP isoform activity and carbofuran metabolism was observed with CYP3A4 (r2 = 0.96). The interaction of carbofuran and the endogenous CYP3A4 substrates, testosterone and estradiol, were also investigated. Testosterone metabolism was activated by carbofuran in HLM and CYP3A4, however, less activation was observed for carbofuran metabolism by testosterone in HLM and CYP3A4. No interactions between carbofuran and estradiol metabolism were observed.  相似文献   

11.
If cholesterol is a substrate of P450 3A4, then it follows that it should also be an inhibitor, particularly in light of the high concentrations found in liver. Heme perturbation spectra indicated a K(d) value of 8 μM for the P450 3A4-cholesterol complex. Cholesterol inhibited the P450 3A4-catalyzed oxidations of nifedipine and quinidine, two prototypic substrates, in liver microsomes and a reconstituted enzyme system with K(i) ~ 10 μM in an apparently non-competitive manner. The concentration of cholesterol could be elevated 4-6-fold in cultured human hepatocytes by incubation with cholesterol; the level of P450 3A4 and cell viability were not altered under the conditions used. Nifedipine oxidation was inhibited when the cholesterol level was increased. We conclude that cholesterol is both a substrate and an inhibitor of P450 3A4, and a model is presented to explain the kinetic behavior. We propose that the endogenous cholesterol in hepatocytes should be considered in models of prediction of metabolism of drugs and steroids, even in the absence of changes in the concentrations of free cholesterol.  相似文献   

12.
We describe initial results on a Western blotting method, using a ployclonal antibody and chemiluminescence detection, for the measurement of cytochrome P450 2E1 in human lymphocytes. The method has been used to study the levels of 2E1 in lymphocytes isolated from 5 ml blood samples collected from a small group of well-controlled type 1 diabetics and healthy individuals. The described method offers increased sensitivity compared with a previously published method and does not need in vitro culturing of the lymphocytes prior to 2E1 measurement. The apparent molecular weight of the lymphocyte P450 2E1 was 55 kDa. There was approximately a six-fold difference in expression levels of 2E1 detected by this immunochemical technique across the study population.  相似文献   

13.
We describe initial results on a Western blotting method, using a ployclonal antibody and chemiluminescence detection, for the measurement of cytochrome P450 2E1 in human lymphocytes. The method has been used to study the levels of 2E1 in lymphocytes isolated from 5 ml blood samples collected from a small group of well-controlled type 1 diabetics and healthy individuals. The described method offers increased sensitivity compared with a previously published method and does not need in vitro culturing of the lymphocytes prior to 2E1 measurement. The apparent molecular weight of the lymphocyte P450 2E1 was 55 kDa. There was approximately a six-fold difference in expression levels of 2E1 detected by this immunochemical technique across the study population.  相似文献   

14.
Enzymatic transformation of most chemical carcinogens is requisite to the formation of electrophiles that cause genotoxicity, and the cytochrome P450 (P450) enzymes are the most prominent enzymes involved in such activation reactions. During the past 15 years the human P450 enzymes have been extensively characterized. Considerable evidence exists that the variation in activity of these enzymes can have important consequences in the actions of drugs. Other studies have been concerned with the activation of procarcinogens by human P450s. Assignments of roles of particular P450s in the metabolism of chemical carcinogens are discussed, along with the current state of evidence for relationships of particular P450s with human cancer.  相似文献   

15.
We recently reported that antibody against purified P450 3A1 (P450p) recognizes two electrophoretically distinct proteins (50 and 51 kDa) in liver microsomes from male and female rats, as determined by Western immunoblotting. Depending on the source of the liver microsomes, the 51-kDa protein corresponded to 3A1 and/or 3A2 which could not be resolved by sodium dodecyl sulfate (SDS)polyacrylamide gel electrophoresis. The other protein (50 kDa) appears to be another member of the P450 IIIA gene family. Both proteins were markedly intensified in liver microsomes from male or female rats treated with pregnenolone-16α-carbonitrile, dexamethasone, troleandomycin, or chlordane. In contrast, treatment of male or female rats with phenobarbital intensified only the 51-kDa protein. Treatment of male rats with Aroclor 1254 induced the 51-kDa protein, but suppressed the 50-kDa form. In addition to their changes in response to inducers, the 50- and 51-kDa proteins also differed in their developmental expression. For example, the 50-kDa protein was not expressed until weaning (3 weeks), whereas the 51-kDa protein was expressed even in 1-week-old rats. At puberty (between weeks 5 and 6), the levels of the 50-kDa and 51-kDa proteins markedly declined in female but not in male rats, which introduced a large sex difference (male > female) in the levels of both proteins. Changes in the level of the 51-kDa protein were paralleled by changes in the rate of testosterone 2β, 6β-, and 15β-hydroxylation. In male rats, the marked increase in the levels of the 50-kDa protein between weeks 2 and 3 coincided with a three- to four fold increase in the rate of testosterone 2β-, 6β-, and 15β-hydroxylation, which suggests that the 50-kDa protein catalyzes the same pathways of testosterone oxidation as the 51-kDa protein. However, this developmental increase in testosterone oxidation may have resulted from an activation of the 51-kDa 3A protein. These results indicate that the two electrophoretically distinct proteins recognized by antibody against P450 3A1 are regulated in a similar but not identical manner, and suggest that the 51-kDa 3A protein is the major microsomal enzyme responsible for catalyzing the 2β-, 6β-, and 15β-hydroxylation of testosterone.  相似文献   

16.
The mechanism of impairment of cytochrome P450 (P450)-dependent metabolism in hamster liver during leishmaniasis is reported. A significant decrease in the level of P450 was observed on the 20th day of infection when the parasite load in the liver was maximum. The decrease in P450 level was accompanied by a significant increase in the level of marker enzymes of liver and degeneration of liver tissue. The impairment was isozyme-specific and concomitant with the induction of nitric oxide synthase. The results of in vitro experiments with generated nitric oxide and with scavengers demonstrated that the impairment is mediated by NO. Treatment of the infected animals with a combination therapy showed reduction in parasite load, reversal of P450 impairment, and recovery of liver enzymes and tissue close to normal.  相似文献   

17.
Alachlor (2-chloro-N-methoxymethyl-N-(2,6-diethylphenyl)acetamide) is a widely used pre-emergent chloroacetanilide herbicide which has been classified by the USEPA as a probable human carcinogen. The putative carcinogenic metabolite, 2,6-diethylbenzoquinone imine (DEBQI), is formed through a complex series of oxidative and non-oxidative steps which have been characterized in rats, mice, and monkeys but not in humans. A key metabolite leading to the formation of DEBQI is 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA). This study demonstrates that male human liver microsomes are able to metabolize alachlor to CDEPA. The rate of CDEPA formation for human liver microsomes (0.0031 +/- 0.0007 nmol/min per mg) is significantly less than the rates of CDEPA formation for rat liver microsomes (0.0353+/-0.0036 nmol/min per mg) or mouse liver microsomes (0.0106 +/- 0.0007). Further, we have screened human cytochrome P450 isoforms 1A1, 1A2, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, and 3A4 and determined that human CYP 3A4 is responsible for metabolism of alachlor to CDEPA. Further work is necessary to determine the extent to which humans are able to metabolize CDEPA through subsequent metabolic steps leading to the formation of DEBQI.  相似文献   

18.
本研究通过体外生化实验研究细胞色素P450 3A7对维生素D3的羟化作用。根据GenBank报道的序列设计特异引物,扩增cyp3a7的编码区,将cyp3a7的编码区插入到pcDNATM3.1/myc-His(-) A的XhoⅠ/Bam HⅠ,通过测序检测序列的正确性。pcDNA-CYP3A7及pcDNA分别瞬时转染293T细胞,48 h后收集细胞,提取S9组分,用Bradford法测定蛋白质浓度。S9组分经12%SDS-PAGE凝胶电泳和Western blotting检测,用myc抗体作为一抗检测CYP3A7在293T细胞的表达水平。0.6 mg S9组分与1μmol/L维生素D3于37℃孵育30 min,用4倍体积的氯仿甲醇(体积比为3∶1)抽提,有机相在氮气流下吹干,残基用于HPLC分析。结果显示,重组表达CYP3A7的293T细胞的S9组分通过Western blotting检测到了特异的约60 kD的条带,对照样品未检测到特异条带的蛋白质。重组表达CYP3A7的293T细胞S9组分的孵育样品通过HPLC检测到了25-羟基维生素D3,对照样品未检测到25-羟基维生素D3。结果表明重组表达的CYP3A7羟化维生素D3生成25-羟基维生素D3。本研究为进一步探究还有哪些P450参与维生素D3在鸡体内的代谢,为阐明其代谢途径提供理论依据。  相似文献   

19.
The human cytochrome P450 (P450) superfamily consists of membrane-bound proteins that metabolize a myriad of xenobiotics and endogenous compounds. Quantification of P450 expression in various tissues under normal and induced conditions has an important role in drug safety and efficacy. Conventional immunoquantification methods have poor dynamic range, low throughput, and a limited number of specific antibodies. Recent advances in MS-based quantitative proteomics enable absolute protein quantification in a complex biological mixture. We have developed a gel-free MS-based protein quantification strategy to quantify CYP3A enzymes in human liver microsomes (HLM). Recombinant protein-derived proteotypic peptides and synthetic stable isotope-labeled proteotypic peptides were used as calibration standards and internal standards, respectively. The lower limit of quantification was approximately 20 fmol P450. In two separate panels of HLM examined (n = 11 and n = 22), CYP3A, CYP3A4 and CYP3A5 concentrations were determined reproducibly (CV or=0.87) and marker activities (r(2)>or=0.88), including testosterone 6beta-hydroxylation (CYP3A), midazolam 1'-hydroxylation (CYP3A), itraconazole 6-hydroxylation (CYP3A4) and CYP3A5-mediated vincristine M1 formation (CYP3A5). Taken together, our MS-based method provides a specific, sensitive and reliable means of P450 protein quantification and should facilitate P450 characterization during drug development, especially when specific substrates and/or antibodies are unavailable.  相似文献   

20.
The atomic structure of human P450 1B1 was determined by x-ray crystallography to 2.7 Å resolution with α-naphthoflavone (ANF) bound in the active site cavity. Although the amino acid sequences of human P450s 1B1 and 1A2 have diverged significantly, both enzymes exhibit narrow active site cavities, which underlie similarities in their substrate profiles. Helix I residues adopt a relatively flat conformation in both enzymes, and a characteristic distortion of helix F places Phe231 in 1B1 and Phe226 in 1A2 in similar positions for π-π stacking with ANF. ANF binds in a distinctly different orientation in P450 1B1 from that observed for 1A2. This reflects, in part, divergent conformations of the helix B′-C loop that are stabilized by different hydrogen-bonding interactions in the two enzymes. Additionally, differences between the two enzymes for other amino acids that line the edges of the cavity contribute to distinct orientations of ANF in the two active sites. Thus, the narrow cavity is conserved in both P450 subfamily 1A and P450 subfamily 1B with sequence divergence around the edges of the cavity that modify substrate and inhibitor binding. The conservation of these P450 1B1 active site amino acid residues across vertebrate species suggests that these structural features are conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号