首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
为进行脂蛋白脂肪酶基因突变与中国人群高脂血症的相关性研究,采用单链构象多态性分析结合DNA序列测定的方法,对386例(其中108例高脂血症患者,278例正常对照)中国人群进行突变筛查。结果发现1个新的沉默突变L103L,1个错义突变P207L,3个剪接突变Int3/3′-ass/C(-6)→T和普遍存在的S447X多态性,其中发生在高脂血症组的P207L杂合子为亚洲首报,并对先证者的家系进行了研究,认为P207L是家族性高脂血症的病因之一,而在正常对照组中也有发现的Int3/3′-ass/C(-6)→T,对以往研究认为其是高脂血症易患因素的观点提出了相反的报告,对于普遍认为有益的多态性位点S447X,进一步研究认为其对于正常人群,特别是健康男性的保护作用更强。结论:脂蛋白脂肪酶基因变异与高脂血症的相关性十分复杂多样,大规模的人群筛查具有重要意义。  相似文献   

2.
Hu Y  Ren Y  Luo RZ  Mao X  Li X  Cao X  Guan L  Chen X  Li J  Long Y  Zhang X  Tian H 《Journal of lipid research》2007,48(8):1681-1688
Increased plasma triglyceride and free fatty acid levels are frequently associated with type 2 diabetes mellitus (T2DM). To test the hypothesis that LPL gene mutations contribute to the hypertriglyceridemia observed in members of T2DM pedigrees, we screened the LPL gene in 53 hypertriglyceridemic members of 26 families. Four known and three novel mutations were identified. All three novel mutations, Lys312insC, Thr361insA, and double mutation Lys312insC + Asn291Ser, are clinically associated with hypertriglyceridemia. In vitro mutagenesis and expression studies confirm that these variants are associated with a significant reduction in LPL activity. The modeled structures displaying the Lys312insC and Thr361insA mutations showed loss of the activity-related C-terminal domain in the LPL protein. Another novel double mutation, Lys312insC + Asn291Ser, resulted in the loss of the catalytic ability of LPL attributable to the complete loss of the C-terminal domain and alteration in the heparin association site. Thus, these novel mutations of the LPL gene contribute to the hypertriglyceridemia observed in members of type 2 diabetic pedigrees.  相似文献   

3.
We have systematically investigated the molecular defects resulting in a primary lipoprotein lipase (LPL) deficiency in a Japanese male infant (proband SH) with fasting hyperchylomicronemia. Neither LPL activity nor immunoreactive LPL mass was detected in pre- or postheparin plasma from proband SH. DNA sequence analysis of the LPL gene of proband SH revealed homozygosity for a novel missense mutation of F270L (Phe(270)-->Leu/TTT(1065)-->TTG) in exon 6. The function of the mutant F270L LPL was determined by both biochemical and immunocytochemical studies. In vitro expression experiments on the mutant F270L LPL cDNA in COS-1 cells demonstrated that the mutant LPL protein was synthesized as a catalytically inactive form and its total amount was almost equal to that of the normal LPL. Moreover, the synthesized mutant LPL was non-releasable by heparin because the intracellular transport of the mutant LPL to the cell surface - by which normal LPL becomes heparin-releasable - was impaired due to the abnormal structure of the mutant LPL protein. These findings explain the failure to detect LPL activities and masses in pre- and postheparin plasma of the proband. The mutant F270L allele generated an XcmI restriction enzyme site in exon 6 of the LPL gene. The carrier status of F270L in the proband's family members was examined by digestion with XcmI. The proband was ascertained to be homozygous for the F270L mutation and his parents and sister were all heterozygous. The LPL activities and masses of the parents and the sister (carriers) were half or less than half of the control values. Regarding the phenotype of the carriers, the mother with a sign of hyperinsulinemia manifested hypertriglyceridemia (type IV hyperlipoproteinemia), whereas the healthy father and the sister were normolipidemic. Hyperinsulinemia may be a strong determinant of hypertriglyceridemia in subjects with heterozygous LPL deficiency.  相似文献   

4.
PURPOSE OF REVIEW: In this review we compare the phenotype and lipoprotein abnormalities of some patients who were found to carry mutations in the APOA5 gene predicted to result in apolipoprotein A-V deficiency. RECENT FINDINGS: The sequencing of the APOA5 gene in patients with primary hypertriglyceridemia, in whom mutations of the LPL and APOC2 genes had been excluded, led to the identification of four families with two different mutations in this gene predicted to result in truncated apolipoprotein A-V. The first mutation (Q148X) was found in a homozygous state in a child with severe type V hyperlipidemia, some clinical manifestations of chylomicronemia syndrome and a slight reduction in plasma postheparin lipoprotein lipase activity. Carriers of a different mutation (Q139X) were recently reported. Four Q139X heterozygotes had type V hyperlipidemia and markedly reduced plasma postheparin lipoprotein lipase activity. The hypertriglyceridemic Q139X heterozygote had other factors that could have contributed to hypertriglyceridemia. ApoB-100 kinetic studies in hypertriglyceridemic Q139X heterozygotes revealed an impairment of very low-density lipoprotein catabolism. SUMMARY: Mutations in the APOA5 gene, leading to truncated apolipoprotein A-V devoid of lipid-binding domains located in the carboxy-terminal end of the protein, if present in the homozygous state, are expected to cause severe type V hyperlipidemia in patients with no mutations in LPL or APOC2 genes. If present in the heterozygous state, these mutations predispose to hypertriglyceridemia in combination with other genetic factors or pathological conditions.  相似文献   

5.
We have identified the molecular basis for familial lipoprotein lipase (LPL) deficiency in two unrelated families with the syndrome of familial hyperchylomicronemia. All 10 exons of the LPL gene were amplified from the two probands' genomic DNA by polymerase chain reaction. In family 1 of French descent, direct sequencing of the amplification products revealed that the patient was heterozygous for two missense mutations, Gly188----Glu (in exon 5) and Asp250----Asn (in exon 6). In family 2 of Italian descent, sequencing of multiple amplification products cloned in plasmids indicated that the patient was a compound heterozygote harboring two mutations, Arg243----His and Asp250----Asn, both in exon 6. Studies using polymerase chain reaction, restriction enzyme digestion (the Gly188----Glu mutation disrupts an Ava II site, the Arg243----His mutation, a Hha I site, and the Asp250----Asn mutation, a Taq I site), and allele-specific oligonucleotide hybridization confirmed that the patients were indeed compound heterozygous for the respective mutations. LPL constructs carrying the three mutations were expressed individually in Cos cells. All three mutant LPLs were synthesized and secreted efficiently; one (Asp250----Asn) had minimal (approximately 5%) catalytic activity and the other two were totally inactive. The three mutations occurred in highly conserved regions of the LPL gene. The fact that the newly identified Asp250----Asn mutation produced an almost totally inactive LPL and the location of this residue with respect to the three-dimensional structure of the highly homologous human pancreatic lipase suggest that Asp250 may be involved in a charge interaction with an alpha-helix in the amino terminal region of LPL. The occurrence of this mutation in two unrelated families of different ancestries (French and Italian) indicates either two independent mutational events affecting unrelated individuals or a common shared ancestral allele. Screening for the Asp250----Asn mutation should be included in future genetic epidemiology studies on LPL deficiency and familial combined hyperlipidemia.  相似文献   

6.
The lipoprotein lipase (LPL) enzyme plays a major role in lipid metabolism, primarily by regulating the catabolism of triglyceride (TG)-rich lipoprotein particles. The gene for LPL is an important candidate for affecting the risk of atherlosclerosis in the general population. Previously, we have shown that the HindIII polymorphism in intron 8 of the LPL gene is associated with plasma TG and HDL-cholesterol variation in Hispanics and non-Hispanic whites (NHWs). However, this polymorphism is located in an intron and hence may be in linkage disequilibrium with a functional mutation in the coding region or intron-exon junctions of the LPL gene. The aim of this study was to initially screen the LPL coding region and the intron-exon junctions by single-strand conformation polymorphism (SSCP) analysis for mutation detection in a group of 86 individuals expressing the phenotype of high TG/low HDL, followed by association studies in a population-based sample of 1,014 Hispanics and NHWs. Four sequence variations were identified by SSCP and DNA sequencing in the coding region of the gene, including two missense mutations (D9N in exon 2 and N291S in exon 6), one samesense mutation (V108V in exon 3), and one nonsense mutation (S447X in exon 9). Multiple regression analyses, including these four mutations and the HindIII polymorphic site, indicate that the association of the HindIII site with plasma TG (P=0.001 in NHWs and P=0.002 in Hispanics) and HDL-cholesterol (P=0.007 in NHWs and P=0.127 in Hispanics) is independent of all other LPL variable sites examined. These observations reinforce the concept that the intronic 8 HindIII site is functional by itself and provide a strong rationale for future comprehensive functional studies to delineate its biological significance.  相似文献   

7.
The molecular basis of familial chylomicronemia (type I hyperlipoproteinemia), a rare autosomal recessive trait, was investigated in six unrelated individuals (five of Spanish descent and one of Northern European extraction). DNA amplification by polymerase chain reaction (PCR) followed by single strand conformation polymorphism (SSCP) analysis allowed rapid identification of the underlying mutations. Six different mutant alleles (three of which are previously undescribed) of the gene encoding lipoprotein lipase (LPL) were discovered in the five LPL-deficient patients. These included an 11 bp deletion in exon 2, and five missense mutations: Trp 86 Arg (exon 3), His 136 Arg (exon 4), Gly 188 Glu (exon 5), Ile 194 Thr (exon 5), and Ile 205 Ser (exon 5). The Trp 86 Arg mutation is the only known missense mutation in exon 3. The other missense mutations lie in the highly conserved "central homology region" in close proximity with the catalytic site of LPL. These and other previously reported missense mutations provide insight into structure/function relationships in the lipase family. The missense mutations point to the important role of particular highly conserved helices and beta-strands in proper folding of the LPL molecule, and of certain connecting loops in the catalytic process. A nonsense mutation (Arg 19 Term) in the gene encoding apolipoprotein C-II (apoC-II), the cofactor of LPL, was found to underlie chylomicronemia in the sixth patient who had normal LPL but was apoC-II-deficient.  相似文献   

8.
OBJECTIVES: In severe type IV hypertriglyceridemia (triglyceride levels >10 g/l), it is yet unknown whether lipoprotein lipase (LPL) differs according to the presence or not of diabetes. METHODS: We compared LPL activity and the presence of four common variants in the LPL gene (Asp 9 Asn (exon 2), Gly 188 Glu (exon 5), Asn 291 Ser (exon 6) and Ser 447 Ter (exon 9)) in a group of 34 patients of whom 17 presented diabetes mellitus. RESULTS: Maximum triglyceride, cholesterol levels and distribution of apolipoprotein E phenotypes did not differ between the two subgroups. Mean post-heparin LPL activity was lower in non-diabetic compared to diabetic patients (9.74 vs. 12.98 micromol FFA/ml/h, p=0.033). Four patients were carrying a mutation in exon 9 (1 non-diabetic), 6 patients in exon 2 (4 non-diabetic) and 1 patient in the non-diabetic subgroup in exon 5. All mutations were at the heterozygous state. CONCLUSION: We found that LPL activity was lower in type IV hyperlipidemia in the absence of diabetes. Genetic defects in the LPL gene that could lead to this lower LPL tended to be more frequently observed in patients without diabetes. These data suggest that the pathomechanisms which contribute to severe type IV hyperlipidemia are different according to the presence or not of diabetes.  相似文献   

9.
The Ashkenazi Jewish population is enriched for carriers of a fatal form of Tay-Sachs disease, an inherited disorder caused by mutations in the alpha-chain of the lysosomal enzyme, beta-hexosaminidase A. Until recently it was presumed that Tay-Sachs patients from this ethnic isolate harbored the same alpha-chain mutation. This was disproved by identification of a splice junction defect in the alpha-chain of an Ashkenazi patient which could be found in only 20-30% of the Ashkenazi carriers tested. In this study we have isolated the alpha-chain gene from an Ashkenazi Jewish patient, GM515, with classic Tay-Sachs disease who was negative for the splice junction defect. Sequence analysis of the promoter region, exon and splice junctions regions, and polyadenylation signal area revealed a 4-base pair insertion in exon 11. This mutation introduces a premature termination signal in exon 11 which results in a deficiency of mRNA in Ashkenazi patients. A dot blot assay was developed to screen patients and heterozygote carriers for the insertion mutation. The lesion was found in approximately 70% of the carriers tested, thereby distinguishing it as the major defect underlying Tay-Sachs disease in the Ashkenazi Jewish population.  相似文献   

10.
The carrier frequency of Asn291Ser polymorphism of the lipoprotein lipase (LPL) gene is 4;-6% in the Western population. Heterozygotes are prone to fasting hypertriglyceridemia and low high density lipoprotein (HDL) cholesterol concentrations especially when secondary factors are superimposed on the genetic defect. We studied the LPL Asn291Ser gene variant as a modulator of postprandial lipemia in heterozygote carriers. Ten normolipidemic carriers were compared to ten control subjects, who were selected to have similar age, sex, BMI, and apolipoprotein (apo)E-phenotype. The subjects were given a lipid-rich mixed meal and their insulin sensitivity was determined by euglycemic hyperinsulinemic clamp technique. The two groups had comparable fasting triglycerides and glucose utilization rate during insulin infusion, but fasting HDL cholesterol was lower in carriers (1.25 +/- 0.05 mmol/L) than in the control subjects (1. 53 +/- 0.06 mmol/L, P = 0.005). In the postprandial state the most pronounced differences were found in the very low density lipoprotein 1 (VLDL1) fraction, where the carriers displayed higher responses of apoB-48 area under the curve (AUC), apoB-100 AUC, triglyceride AUC, and retinyl ester AUC than the control subjects. The most marked differences in apoB-48 and apoB-100 concentrations were observed late in the postprandial period (9 and 12 h), demonstrating delayed clearance of triglyceride-rich particles of both hepatic and intestinal origin. Postprandially, the carriers exhibited enrichment of triglycerides in HDL fraction. Thus, in normolipidemic carriers the LPL Asn291Ser gene variant delays postprandial triglyceride, apoB-48, apoB-100, and retinyl ester metabolism in VLDL1 fraction and alters postprandial HDL composition compared to matched non-carriers.  相似文献   

11.
We systematically investigated the molecular defects causing a primary LPL deficiency in a Japanese male infant (patient DI) with fasting hyperchylomicronemia (type I hyperlipoproteinemia) and in his parents. Patient DI had neither LPL activity nor immunoreactive LPL mass in the pre- and post-heparin plasma. The patient was a compound heterozygote for novel mutations consisting of a G-to-T transversion at the first nucleotide of exon 5 [+1 position of 3' acceptor splice site (3'-ass) of intron 4] and a T-to-C transition in the invariant GT at position +2 of the 5' donor splice site (5'-dss) of intron 8 (Int8/5'-dss/t(+2)c). The G-to-T transversion, although affecting the 11 nucleotide of the 3'-consensus acceptor splice site, resulted in a substitution of Gly(154) to Val (G154V; GG(716)C(-->)GTC). The mutant G154V LPL expressed in COS-1 cells was catalytically inactive and hardly released from the cells by heparin. The Int8/5'-dss/t(+2)c mutation inactivated the authentic 5' splice site of intron 8 and led to the utilization of a cryptic 5'-dss in exon 8 as an alternative splice site 133 basepairs upstream from the authentic splice site, thereby causing joining of a part of exon 8 to exon 9 with skipping of a 134-bp fragment of exon 8 and intron 8. These additional mutations in the consensus sequences of the 3' and 5' splice sites might be useful for better understanding the factors that are involved in splice site selection in vivo.  相似文献   

12.
Abetalipoproteinemia (ABL) is an inherited disease characterized by the virtual absence of apolipoprotein B (apoB)-containing lipoproteins from plasma. Only limited numbers of families have been screened for mutations in the microsomal triglyceride transfer protein (MTP) gene. To clarify the genetic basis of clinical diversity of ABL, mutations of the MTP gene have been screened in 4 unrelated patients with ABL. Three novel mutations have been identified: a frameshift mutation caused by a single adenine deletion at position 1389 of the cDNA, and a missense mutation, Asn780Tyr, each in homozygous forms; and a splice site mutation, 2218-2A-->G, in a compound heterozygous form. The frameshift and splice site mutations are predicted to encode truncated forms of MTP. When transiently expressed in Cos-1 cells, the Asn780Tyr mutant MTP bound protein disulfide isomerase (PDI) but displayed negligible MTP activity. It is of interest that the patient having the Asn780Tyr mutation, a 27-year-old male, has none of the manifestations characteristic of classic ABL even though his plasma apoB and vitamin E were virtually undetectable. These results indicated that defects of the MTP gene are the proximal cause of ABL.  相似文献   

13.
The Na(+)/glucose cotransporter gene SGLT1 was analyzed in a Japanese patient with congenital glucose-galactose malabsorption. Genomic DNA was used as a template for amplification by the polymerase chain reaction of each of the 15 exons of SGLT1. The amplification products were cloned and sequenced. About half of the exon 5 clones of the patient contained a C-->T transition, resulting in an Arg(135)-->Trp mutation, whereas the remaining clones contained the normal exon 5 sequence. In addition, whereas some exon 12 clones exhibited the normal sequence, others showed a CAgtaggtatcatc-->CAgacc mutation at the splice donor site of intron 12 that may result either in the skipping of exon 12 or in read-through of intron 12. Neither the Arg(135)-->Trp mutant nor either of the possible intron 12 mutant proteins exhibited Na(+)-dependent glucose transport activity when expressed in Xenopus oocytes. Immunocytochemical analysis indicated, however, that the Arg(135)-->Trp mutant was localized to the oocyte plasma membrane. DNA sequence analysis revealed that the missense mutation in exon 5 and the splice site mutation in intron 12 were inherited from the proband's father and mother, respectively. These results indicate that the patient is a compound heterozygote for this disease, and that the Arg(135)-->Trp mutant of SGLT1 undergoes normal trafficking to the plasma membrane but is non-functional.  相似文献   

14.
This systematic review attempted to summarize the associations between the Asn291Ser variant in the lipoprotein lipase (LPL) gene and dyslipidemia, the risk of type 2 diabetes mellitus (T2DM), and coronary heart disease (CHD). In addition, the relationships between the Asn291Ser variant and other metabolic diseases such as obesity and high blood pressure were also investigated in this systematic review. We systematically reviewed the literature by means of a meta-analysis. Twenty-one articles, including 19,246 white subjects, were selected for this meta-analysis. The summary standardized mean difference (SMD) of plasma triglyceride (TG) for carriers compared with noncarriers of the Asn291Ser variant was 3.23 (P < 0.00001). The summary SMD of plasma HDL-cholsterol (HDL-C) for carriers compared with noncarriers of the Asn291Ser variant was -3.42 (P < 0.0001). The summary SMD of the association of the Asn291Ser variant with plasma TG increased with increasing age and weight gain. Significant interactions between the LPL Asn291Ser variant and fasting glucose, T2DM, and CHD were seen (P = 0.02, 0.04, and 0.01, respectively). No significant interactions were seen between the LPL Asn291Ser variant and body mass index, waist-hip ratio, and blood pressure (P > 0.05). This meta-analysis indicates that the Asn291Ser variant in the LPL gene is a risk factor for dyslipidemia, characterized by hypertriglyceridemia and low HDL-C levels. And the Asn291Ser variant in the LPL gene predisposes to more severe dyslipidemia with increasing age and weight gain. Also, this meta-analysis shows that the LPL Asn291Ser variant is associated with CHD and T2DM.  相似文献   

15.
Prostacyclin inhibits platelet aggregation, smooth muscle cell proliferation, and vasoconstriction. The prostacyclin synthase (PGIS) gene is a candidate gene for cardiovascular disease. The purpose of this study was to locate possible mutations in the PGIS gene related to hypertension and cerebral infarction. Using the polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) method, we discovered a T to C transition at the +2 position of the splicing donor site of intron 9 in patients with essential hypertension (EH). In vitro expression analysis of an allelic minigene consisting of exons 8-10 revealed that the nucleotide transition causes skipping of exon 9. This in turn alters the translational reading frame of exon 10 and introduces a premature stop codon (TGA). A three-dimensional model shows that the splice site mutation produces a truncated protein with a deletion in the heme-binding region. This splice site mutation was found in only one subject in 200 EH patients and 200 healthy controls. Analysis of the patient's family members revealed the mutation in two of the three siblings. The urinary excretion of prostacyclin metabolites in subjects with the mutation was significantly decreased. All subjects displaying the splice site mutation in the PGIS gene were hypertensive. In this study, we report a novel splicing mutation in the PGIS gene, which is associated with hypertension in a family. It is thought that this mechanism may involve in the pathophysiology of their hypertension.  相似文献   

16.
The alternatively spliced exon 9 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene codes for the initial part of the amino-terminal nucleotide-binding fold of CFTR. A unique feature of the acceptor splice site preceding this exon is a variable length polymorphism within the polypyrimidine tract influencing the extent of exon 9 skipping in CFTR mRNA. We investigated this repeat for its relationship to CFTR mutations and intragenic markers on 200 chromosomes from German patients with cystic fibrosis (CF). Four frequent length variations were strongly associated with the four predominant haplotypes previously defined by intragenic marker dimorphisms. One of these alleles displayed absolute linkage disequilibrium to the major CF mutation F508. Other frequent CFTR mutations were linked to one particular splice site haplotype indicating that differential exon 9 skipping contributes little to the clinical heterogeneity among CF patients with an identical mutation. We also identified a novel missense mutation (V456F) and a novel nonsense mutation (Q414X) within the coding region of exon 9. The missense mutation V456F adjacent to Walker motif A was present in a pancreas-sufficient CF patient. In contrast, the pancreas-insufficient Q414X/F508 compound heterozygote suffered from a severe form of the disease, indicating that alternative splicing of exon 9 does not overcome the deleterious effect of a stop codon within this exon.  相似文献   

17.
X-linked infantile spinal muscular atrophy (XL-SMA) is an X-linked disorder presenting with the clinical features hypotonia, areflexia, and multiple congenital contractures (arthrogryposis) associated with loss of anterior horn cells and infantile death. To identify the XL-SMA disease gene, we performed large-scale mutation analysis in genes located between markers DXS8080 and DXS7132 (Xp11.3–Xq11.1). This resulted in detection of three rare novel variants in exon 15 of UBE1 that segregate with disease: two missense mutations (c.1617 G→T, p.Met539Ile; c.1639 A→G, p.Ser547Gly) present each in one XL-SMA family, and one synonymous C→T substitution (c.1731 C→T, p.Asn577Asn) identified in another three unrelated families. Absence of the missense mutations was demonstrated for 3550 and absence of the synonymous mutation was shown in 7914 control X chromosomes; therefore, these results yielded statistical significant evidence for the association of the synonymous substitution and the two missense mutations with XL-SMA (p = 2.416 × 10−10, p = 0.001815). We also demonstrated that the synonymous C→T substitution leads to significant reduction of UBE1 expression and alters the methylation pattern of exon 15, implying a plausible role of this DNA element in developmental UBE1 expression in humans. Our observations indicate first that XL-SMA is part of a growing list of neurodegenerative disorders associated with defects in the ubiquitin-proteasome pathway and second that synonymous C→T transitions might have the potential to affect gene expression.  相似文献   

18.
A large family is reported with familial hepatic triglyceride lipase (HTGL) deficiency and with the coexistence of reduced lipoprotein lipase (LPL) similar to the heterozygote state of LPL deficiency. The proband was initially detected because of hypertriglyceridemia and chylomicronemia. He was later demonstrated to have beta-VLDL despite an apo E3/E3 phenotype and the lack of stigmata of type III hyperlipoproteinemia. The proband had no HTGL activity in postheparin plasma. Two of his half-sisters had very low HTGL activity (39 and 31 nmol free fatty acids/min/ml; normal adult female greater than 44). His son and daughters had decreased HTGL activity (normal male and preadolescent female greater than 102), which would be expected in obligate heterozygotes for HTGL deficiency. Low HTGL activity was associated with LDL particles which were larger and more buoyant. Several family members, including the proband, had reduced LPL activity and mass less than that circumscribed by the 95% confidence-interval ellipse for normal subjects and had hyperlipidemia similar to that described in heterozygote relatives of patients with LPL deficiency. All the sibs with hyperlipidemia had a reduced LPL activity and mass, while subjects with isolated reduced HTGL (with normal LPL activity) had normal lipid phenotypes. Analysis of genomic DNA from these subjects by restriction-enzyme digestion revealed no major abnormalities in the structure of either the HTGL or the LPL gene. Compound heterozygotes for HTGL and LPL deficiency show lipoprotein physiological characteristics typical for HTGL deficiency, while their variable lipid phenotype is typical for LPL deficiency.  相似文献   

19.
We have investigated a patient of English ancestry with familial chylomicronemia caused by lipoprotein lipase (LPL) deficiency. DNA sequence analysis of all exons and intron-exon boundaries of the LPL gene identified two single-base mutations, a T----C transition for codon 86 (TGG) at nucleotide 511, resulting in a Trp86----Arg substitution, and a C----T transition at nucleotide 571, involving the codon CAG encoding Gln106 and producing Gln106----Stop, a mutation described by Emi et al. The functional significance of the two mutations was confirmed by in vitro expression and enzyme activity assays of the mutant LPL. Linkage analysis established that the patient is a compound heterozygote for the two mutations. The Trp86----Arg mutation in exon 3 is the first natural mutation identified outside exons 4-6, which encompass the catalytic triad residues.  相似文献   

20.
We have previously reported two common lipoprotein lipase (LPL) gene mutations underlying LPL deficiency in the majority of 37 French Canadians (Monsalve et al., 1990. J. Clin. Invest. 86: 728-734; Ma et al., 1991. N. Engl. J. Med. 324: 1761-1766). By examining the 10 coding exons of the LPL gene in another French Canadian patient, we have identified a third missense mutation that is found in two of the three remaining patients for whom mutations are undefined. This is a G to A transition in exon 6 that results in a substitution of asparagine for aspartic acid at residue 250. Using in vitro site-directed mutagenesis, we have confirmed that this mutation causes a catalytically defective LPL protein. In addition, the Asp250----Asn mutation was also found on the same haplotype in an LPL-deficient patient of Dutch ancestry, suggesting a common origin. This mutation alters a TaqI restriction site in exon 6 and will allow for rapid screening in patients with LPL deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号