首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
《Biotechnology advances》2019,37(6):107384
The insights of nanotechnology for cellulosic biohydrogen production through dark fermentation are reviewed. Lignocellulosic biomass to sugar generation is a complex process and covers the most expensive part of cellulose to sugar production technology. In this context, the impacts of nanomaterial on lignocellulosic biomass to biohydrogen production process have been reviewed. In addition, the feasibility of nanomaterials for implementation in each step of the cellulosic biohydrogen production is discussed for economic viability of the process. Numerous aspects such as possible replacement of chemical pretreatment method using nanostructured materials, use of immobilized enzyme for a fast rate of reaction and its reusability along with long viability of microbial cells and hydrogenase enzyme for improving the productivity are the highlights of this review. It is found that various types of nanostructured materials e.g. metallic nanoparticles (Fe°, Ni, Cu, Au, Pd, Au), metal oxide nanoparticles (Fe2O3, F3O4, NiCo2O4, CuO, NiO, CoO, ZnO), nanocomposites (Si@CoFe2O4, Fe3O4/alginate) and graphene-based nanomaterials can influence different parameters of the process and therefore may perhaps be utilized for cellulosic biohydrogen production. The emphasis has been given on the cost issue and synthesis sustainability of nanomaterials for making the biohydrogen technology cost effective. Finally, recent advancements and feasibility of nanomaterials as the potential solution for improved cellulose conversion to the biohydrogen production process have been discussed, and this is likely to assist in developing an efficient, economical and sustainable biohydrogen production technology.  相似文献   

2.
Lignocellulosic materials are commonly used in bio-H2 production for the sustainable energy resource development as they are abundant, cheap, renewable and highly biodegradable. In the process of the bio-H2 production, the pretreated lignocellulosic materials are firstly converted to monosaccharides by enzymolysis and then to H2 by fermentation. Since the structures of lignocellulosic materials are rather complex, the hydrolysates vary with the used materials. Even using the same lignocellulosic materials, the hydrolysates also change with different pretreatment methods. It has been shown that the appropriate hydrolysate compositions can dramatically improve the biological activities and bio-H2 production performances. Over the past decades, hydrolysis with respect to different lignocellulosic materials and pretreatments has been widely investigated. Besides, effects of the hydrolysates on the biohydrogen yields have also been examined. In this review, recent studies on hydrolysis as well as their effects on the biohydrogen production performance are summarized. [BMB Reports 2013; 46(5): 244-251]  相似文献   

3.
包括产电菌群和噬电菌群的人工电活性微生物菌群(synthetic electroactive microbial consortia)通过菌种间的物质能量级联反应介导化学能与(光)电能间的相互转化,其可利用底物来源广泛、双向电子传递速率快、环境稳定性强,在清洁电能开发、废水处理、环境修复、生物固碳固氮以及生物燃料、无机纳米材料、高聚物等高值化学品合成等多个领域具有广泛的应用前景。针对人工电活性微生物菌群设计、构建与应用,本文总结电活性微生物菌群界面电子传递和种间电子传递机制,概括基于“劳力分工”原理设计构建人工电活性微生物菌群物质能量级联反应基本架构,总结菌群关系与菌群生态位优化等人工电活性微生物菌群工程化策略,分类列举人工电活性微生物菌群在利用廉价生物质产电、生物光伏固碳产电,光驱噬电生物菌群固氮等相关应用。最后对人工电活性微生物菌群未来研究方向进行了展望。  相似文献   

4.
Carbon dioxide (CO2) stands out as sustainable feedstock for developing a circular carbon economy whose energy supply could be obtained by boosting the production of clean hydrogen from renewable electricity. H2-dependent CO2 gas fermentation using acetogenic microorganisms offers a viable solution of increasingly demonstrated value. While gas fermentation advances to achieve commercial process scalability, which is currently limited to a few products such as acetate and ethanol, it is worth taking the best of the current state-of-the-art technology by its integration within innovative bioconversion schemes. This review presents multiple scenarios where gas fermentation by acetogens integrate into double-stage biotechnological production processes that use CO2 as sole carbon feedstock and H2 as energy carrier for products' synthesis. In the integration schemes here reviewed, the first stage can be biotic or abiotic while the second stage is biotic. When the first stage is biotic, acetogens act as a biological platform to generate chemical intermediates such as acetate, formate and ethanol that become substrates for a second fermentation stage. This approach holds the potential to enhance process titre/rate/yield metrics and products' spectrum. Alternatively, when the first stage is abiotic, the integrated two-stage scheme foresees, in the first stage, the catalytic transformation of CO2 into C1 products that, in the second stage, can be metabolized by acetogens. This latter scheme leverages the metabolic flexibility of acetogens in efficient utilization of the products of CO2 abiotic hydrogenation, namely formate and methanol, to synthesize multicarbon compounds but also to act as flexible catalysts for hydrogen storage or production.  相似文献   

5.
To calculate the global warming potential of biogenic carbon dioxide emissions (GWPbCO2) associated with diverting residual biomass to bioenergy use, the decay of annual biogenic carbon pulses into the atmosphere over 100 years was compared between biomass use for energy and its business-as-usual decomposition in agricultural, forestry, or landfill sites. Bioenergy use increased atmospheric CO2 load in all cases, resulting in a 100GWPbCO2 (units of g CO2e/g biomass CO2 released) of 0.003 for the fast-decomposing agricultural residues to 0.029 for the slow, 0.084–0.625 for forest residues, and 0.368–0.975 for landfill lignocellulosic biomass. In comparison, carbon emissions from fossil fuels have a 100GWP of 1.0 g (CO2e/g fossil CO2). The fast decomposition rate and the corresponding low 100GWPbCO2 values of agricultural residues make them a more climate-friendly feedstock for bioenergy production relative to forest residues and landfill lignocellulosic biomass. This study shows that CO2 released from the combustion of bioenergy or biofuels made from residual biomass has a greenhouse gas footprint that should be considered in assessing climate impacts.  相似文献   

6.
Life cycle assessment (LCA) was combined with primary data from nine forest harvesting operations in New York, Maine, Massachusetts, and Vermont, from 2013 to 2019 where forest biomass (FB) for bioenergy was one of several products. The objective was to conduct a data‐driven study of greenhouse gas emissions associated with FB feedstock harvesting operations in the Northeast United States. Deterministic and stochastic LCA models were built to simulate the current FB bioenergy feedstock supply chain in the Northeast US with a cradle‐to‐gate scope (forest harvest through roadside loading) and a functional unit of 1.0 Mg of green FB feedstock at a 50% moisture content. Baseline LCA, sensitivity analysis, and uncertainty analyses were conducted for three different FB feedstock types—dirty chips, clean chips, and grindings—enabling an empirically driven investigation of differences between feedstock types, individual harvesting process contributions, and literature comparisons. The baseline LCA average impacts were lower for grindings (4.57 kg CO2eq/Mg) and dirty chips (7.16 kg CO2eq/Mg) than for clean chips (23.99 kg CO2eq/Mg) under economic allocation, but impacts were of similar magnitude under mass allocation, ranging from 24.42 to 27.89 kg CO2eq/Mg. Uncertainty analysis showed a wider range of probable results under mass allocation compared to economic allocation. Sensitivity analysis revealed the impact of variations in the production masses and total economic values of primary products of forest harvests on the LCA results due to allocation of supply chain emissions. The high variability in fuel use between logging contractors also had a distinct influence on LCA results. The results of this study can aid decision‐makers in energy policy and guide emissions reductions efforts while informing future LCAs that expand the system boundary to regional FB energy pathways, including electricity generation, transportation fuels, pellets for heat, and combined heat and power.  相似文献   

7.
With rapid technology progress and cost reduction, clean hydrogen from water electrolysis driven by renewable powers becomes a potential feedstock for CO2 fixation by hydrogen-oxidizing bacteria. Cupriavidus necator (formally Ralstonia eutropha), a representative member of the lithoautotrophic prokaryotes, is a promising producer of polyhydroxyalkanoates and single cell proteins. This paper reviews the fundamental properties of the hydrogen-oxidizing bacterium, the metabolic activities under limitation of individual gases and nutrients, and the value-added products from CO2, including the products with large potential markets. Gas fermentation and bioreactor safety are discussed for achieving high cell density and high productivity of desired products under chemolithotrophic conditions. The review also updates the recent research activities in metabolic engineering of C. necator to produce novel metabolites from CO2.  相似文献   

8.
木质纤维素材料具有储量丰富、原料成本低及可再生等优点,人们期望其能替代石油作为原料来生产多种燃料和化学品,如生物柴油、生物氢、生物乙醇等,而木质纤维素解聚过程的高成本成为实现这一过程的主要障碍。一体化生物加工过程 (Consolidated bioprocessing,CBP) 是指在不添加任何外源水解酶的情况下,直接将木质纤维素原料一步转化为生物化学品的生物加工过程。通过基因工程,将水解酶的生成、木质纤维素的降解和生物产品的生产等功能集成到一个生物体上。对于CBP,人们通常有两种策略可供选择,即本地策略和重组策略。文中重点介绍了基于重组策略的CBP的原理、两种不同的应对方式、合成生物学及代谢工程对其的贡献以及未来所面临的挑战与展望。  相似文献   

9.

Background

Biological hydrogen production from lignocellulosic biomass shows great potential as a promising alternative to conventional hydrogen production methods, such as electrolysis of water and coal gasification. Currently, most researches on biohydrogen production from lignocellulose concentrate on consolidated bioprocessing, which has the advantages of simpler operation and lower cost over processes featuring dedicated cellulase production. However, the recalcitrance of the lignin structure induces a low cellulase activity, making the carbohydrates in the hetero-matrix more unapproachable. Pretreatment of lignocellulosic biomass is consequently an extremely important step in the commercialization of biohydrogen, and for massive realization of lignocellulosic biomass as alternative fuel feedstock. Thus, development of a pretreatment method which is cost efficient, environmentally benign, and highly efficient for enhanced consolidated bioprocessing of lignocellulosic biomass to hydrogen is essential.

Results

In this research, fungal pretreatment was adopted for enhanced hydrogen production by consolidated bioprocessing performance. To confirm the fungal pretreatment efficiency, two typical thermochemical pretreatments were also compared side by side. Results showed that the fungal pretreatment was superior to the other pretreatments in terms of high lignin reduction of up to 35.3% with least holocellulose loss (the value was only 9.5%). Microscopic structure observation combined with Fourier transform infrared spectroscopy (FTIR) analysis further demonstrated that the lignin and crystallinity of lignocellulose were decreased with better holocellulose reservation. Upon fungal pretreatment, the hydrogen yield and hydrogen production rate were 6.8 mmol H2 g-1 pretreated substrate and 0.89 mmol L-1 h-1, respectively, which were 2.9 and 4 times higher than the values obtained for the untreated sample.

Conclusions

Results revealed that although all pretreatments could contribute to the enhancement of hydrogen production from cornstalk, fungal pretreatment proved to be the optimal method. It is apparent that besides high hydrogen production efficiency, fungal pretreatment also offered several advantages over other pretreatments such as being environmentally benign and energy efficient. This pretreatment method thus has great potential for application in consolidated bioprocessing performance of hydrogen production.
  相似文献   

10.
In the recent years, microalgae have captured researchers’ attention as the alternative feedstock for various bioenergy production such as biodiesel, biohydrogen, and bioethanol. Cultivating microalgae in wastewaters to simultaneously bioremediate the nutrient-rich wastewater and maintain a high biomass yield is a more economical and environmentally friendly approach. The incorporation of algal–bacterial interaction reveals the mutual relationship of microorganisms where algae are primary producers of organic compounds from CO2, and heterotrophic bacteria are secondary consumers decomposing the organic compounds produced from algae. This review would provide an insight on the challenges and future development of algal–bacterial consortium and its contribution in promoting a sustainable route to greener industry. It is believed that microalgal-bacterial consortia will be implemented in the near-future for sub-sequential treatment of wastewater bioremediation, bioenergy production and CO2 fixation, promoting sustainability and making extraordinary advancement in life sciences sectors.  相似文献   

11.
The use of fossil fuels is now widely accepted as unsustainable due to depleting resources and the accumulation of greenhouse gases in the environment that have already exceeded the “dangerously high” threshold of 450 ppm CO2-e. To achieve environmental and economic sustainability, fuel production processes are required that are not only renewable, but also capable of sequestering atmospheric CO2. Currently, nearly all renewable energy sources (e.g. hydroelectric, solar, wind, tidal, geothermal) target the electricity market, while fuels make up a much larger share of the global energy demand (~66%). Biofuels are therefore rapidly being developed. Second generation microalgal systems have the advantage that they can produce a wide range of feedstocks for the production of biodiesel, bioethanol, biomethane and biohydrogen. Biodiesel is currently produced from oil synthesized by conventional fuel crops that harvest the sun’s energy and store it as chemical energy. This presents a route for renewable and carbon-neutral fuel production. However, current supplies from oil crops and animal fats account for only approximately 0.3% of the current demand for transport fuels. Increasing biofuel production on arable land could have severe consequences for global food supply. In contrast, producing biodiesel from algae is widely regarded as one of the most efficient ways of generating biofuels and also appears to represent the only current renewable source of oil that could meet the global demand for transport fuels. The main advantages of second generation microalgal systems are that they: (1) Have a higher photon conversion efficiency (as evidenced by increased biomass yields per hectare): (2) Can be harvested batch-wise nearly all-year-round, providing a reliable and continuous supply of oil: (3) Can utilize salt and waste water streams, thereby greatly reducing freshwater use: (4) Can couple CO2-neutral fuel production with CO2 sequestration: (5) Produce non-toxic and highly biodegradable biofuels. Current limitations exist mainly in the harvesting process and in the supply of CO2 for high efficiency production. This review provides a brief overview of second generation biodiesel production systems using microalgae.  相似文献   

12.
CO2 reduction using molecular catalysts is a key area of study for achieving electrical‐to‐chemical energy storage and feedstock chemical synthesis. Compared to classical metallic solid‐state catalysts, these molecular catalysts often result in high performance and selectivity, even under unfavorable aqueous environments. This review considers the recent state‐of‐the‐art molecular catalysts for CO2 electroreduction and explains the observed performance, therefore guiding the design principles for the next generation of molecules and material/molecule hybrid electrodes. The most recent advances related to these issues are discussed.  相似文献   

13.
An important but little understood aspect of bioenergy production is its overall impact on soil carbon (C) and nitrogen (N) cycling. Increased energy production from biomass will inevitably lead to higher input of its by‐products to the soil as amendments or fertilizers. However, it is still unclear how these by‐products will influence microbial transformation processes in soil, and thereby its greenhouse gas (GHG) balance and organic C stocks. In this study, we assess C and N dynamics and GHG emissions following application of different bioenergy by‐products to soil. Ten by‐products were selected from different bioenergy chains: anaerobic digestion (manure digestates), first generation biofuel by‐products (rapeseed meal, distilled dried grains with solubles), second‐generation biofuel by‐products (nonfermentables from hydrolysis of different lignocellulosic materials) and pyrolysis (biochars). These by‐products were added at a constant N rate (150 kg N ha?1) to a sandy soil and incubated at 20 °C. After 60 days, >80% of applied C had been emitted as CO2 in the first‐generation biofuel residue treatments. For second‐generation biofuel residues this was approximately 60%, and for digestates 40%. Biochars were the most stable residues with the lowest CO2 loss (between 0.5% and 5.8% of total added C). Regarding N2O emissions, addition of first‐generation biofuel residues led to the highest total N2O emissions (between 2.5% and 6.0% of applied N). Second‐generation biofuel residues emitted between 1.0% and 2.0% of applied N, with the original feedstock material resulting in similar N2O emissions and higher C mineralization rates. Anaerobic digestates resulted in emissions <1% of applied N. The two biochars used in this study decreased N2O emissions below background values. We conclude that GHG dynamics of by‐products after soil amendment cannot be ignored and should be part of the lifecycle analysis of the various bioenergy production chains.  相似文献   

14.
In the global transition to a sustainable low‐carbon economy, CO2 capture and storage technology still plays a critical role for deep emission reduction, particularly for the stationary sources in power generation and industry. However, for small and mobile emission sources in transportation, CO2 capture is not suitable and it is more practical to use relatively clean energy, such as natural gas. In these two low‐carbon energy technologies, designing highly selective sorbents is one of the key and most challenging steps. Toward this end, metal‐organic frameworks (MOFs) have received continuously intensive attention in the past decades for their highly porous and diversified structures. In this review, the recent progress in developing MOFs for selective CO2 capture from post‐combustion flue gas and CH4 storage for vehicle applications are summarized. For CO2 capture, several promising strategies being used to improve CO2 adsorption uptake at low pressures are highlighted and compared. In addition, the conventional and novel regeneration techniques for MOFs are also discussed. In the case of CH4 storage, the flexible and rigid MOFs, whose CH4 storage capacity is close to the target set by U.S. Department of Energy are particularly emphasized. Finally, the challenge of using MOFs for CH4 storage is discussed.  相似文献   

15.
The industrial park of Herdersbrug (Brugge, Flanders, Belgium) comprises 92 small and medium‐sized enterprises, a waste‐to‐energy incinerator, and a power plant (not included in the study) on its site. To study the carbon dioxide (CO2) neutrality of the park, we made a park‐wide inventory for 2007 of the CO2 emissions due to energy consumption (electricity and fossil fuel) and waste incineration, as well as an inventory of the existing renewable electricity and heat generation. The definition of CO2 neutrality in Flanders only considers CO2 released as a consequence of consumption or generation of electricity, not the CO2 emitted when fossil fuel is consumed for heat generation. To further decrease or avoid CO2 emissions, we project and evaluate measures to increase renewable energy generation. The 21 kilotons (kt) of CO2 emitted due to electricity consumption are more than compensated by the 25 kt of CO2 avoided by generation of renewable electricity. Herdersbrug Industrial Park is thus CO2 neutral, according to the definition of the Flemish government. Only a small fraction (6.6%) of the CO2 emitted as a consequence of fossil fuel consumption (heat generation) and waste incineration is compensated by existing and projected measures for renewable heat generation. Of the total CO2 emission (149 kt) due to energy consumption (electricity + heat generation) and waste incineration on the Herdersbrug Industrial Park in 2007, 70.5% is compensated by existing and projected renewable energy generated in the park. Forty‐seven percent of the yearly avoided CO2 corresponds to renewable energy generated from waste incineration and biomass fermentation.  相似文献   

16.
The substitution of fossil by renewable energy sources is a major strategy in reducing CO2 emission and mitigating climate change. In the transport sector, which is still mainly dependent on liquid fuels, the production of second generation ethanol from lignocellulosic feedstock is a promising strategy to substitute fossil fuels. The main prerequisites on designated crops for increased biomass production are high biomass yield and optimized saccharification for subsequent use in fermentation processes. We tried to address these traits by the overexpression of a sucrose-phosphate synthase gene (SoSPS) from sugarcane (Saccharum officinarum) in the model grass Brachypodium distachyon. The resulting transgenic B. distachyon lines not only revealed increased plant height at early growth stages but also higher biomass yield from fully senesced plants, which was increased up to 52 % compared to wild-type. Additionally, we determined higher sucrose content in senesced leaf biomass from the transgenic lines, which correlated with improved biomass saccharification after conventional thermo-chemical pretreatment and enzymatic hydrolysis. Combining increased biomass production and saccharification efficiency in the generated B. distachyon SoSPS overexpression lines, we obtained a maximum of 74 % increase in glucose release per plant compared to wild-type. Therefore, we consider SoSPS overexpression as a promising approach in molecular breeding of energy crops for optimizing yields of biomass and its utilization in second generation biofuel production.  相似文献   

17.

Background

Biohythane production via two-stage fermentation is a promising direction for sustainable energy recovery from lignocellulosic biomass. However, the utilization of lignocellulosic biomass suffers from specific natural recalcitrance. Hydrothermal liquefaction (HTL) is an emerging technology for the liquefaction of biomass, but there are still several challenges for the coupling of HTL and two-stage fermentation. One particular challenge is the limited efficiency of fermentation reactors at a high solid content of the treated feedstock. Another is the conversion of potential inhibitors during fermentation. Here, we report a novel strategy for the continuous production of biohythane from cornstalk through the integration of HTL and two-stage fermentation. Cornstalk was converted to solid and liquid via HTL, and the resulting liquid could be subsequently fed into the two-stage fermentation systems. The systems consisted of two typical high-rate reactors: an upflow anaerobic sludge blanket (UASB) and a packed bed reactor (PBR). The liquid could be efficiently converted into biohythane via the UASB and PBR with a high density of microbes at a high organic loading rate.

Results

Biohydrogen production decreased from 2.34 L/L/day in UASB (1.01 L/L/day in PBR) to 0 L/L/day as the organic loading rate (OLR) of the HTL liquid products increased to 16 g/L/day. The methane production rate achieved a value of 2.53 (UASB) and 2.54 L/L/day (PBR), respectively. The energy and carbon recovery of the integrated HTL and biohythane fermentation system reached up to 79.0 and 67.7%, respectively. The fermentation inhibitors, i.e., 5-hydroxymethyl furfural (41.4–41.9% of the initial quantity detected) and furfural (74.7–85.0% of the initial quantity detected), were degraded during hydrogen fermentation. Compared with single-stage fermentation, the methane process during two-stage fermentation had a more efficient methane production rate, acetogenesis, and COD removal. The microbial distribution via Illumina MiSeq sequencing clarified that the biohydrogen process in the two-stage systems functioned not only for biohydrogen production, but also for the degradation of potential inhibitors. The higher distribution of the detoxification family Clostridiaceae, Bacillaceae, and Pseudomonadaceae was found in the biohydrogen process. In addition, a higher distribution of acetate-oxidizing bacteria (Spirochaetaceae) was observed in the biomethane process of the two-stage systems, revealing improved acetogenesis accompanied with an efficient conversion of acetate.

Conclusions

Biohythane production could be a promising process for the recovery of energy and degradation of organic compounds from hydrothermal liquefied biomass. The two-stage process not only contributed to the improved quality of the gas fuels but also strengthened the biotransformation process, which resulted from the function of detoxification during biohydrogen production and enhanced acetogenesis during biomethane production.
  相似文献   

18.
The article examines the possibility of using residues from greenhouse cucumber and tomato cultivation as biomass for energy and CO2 production in order to meet greenhouse needs. Methane fermentation and combustion were compared. Moreover, the legitimacy of ensiling as a storage method for biogas plant was evaluated. The tested waste was found to be an unsuitable feedstock for the production of silage due to low sugar and high protein content. Fresh waste had a higher biogas yield than silage; however, its fermentation lasted longer. Furthermore, the results showed that, in the case of fresh residues, the methane fermentation proved to be a more energy-efficient process, while air-dry biomass is a more sustainable feedstock for combustion. The energy and CO2 balance showed that, regardless of the method used, the available quantity of waste is too small to meet the greenhouse needs.  相似文献   

19.
Biogas produced from anaerobic digestion is a versatile and environment friendly fuel which traditionally utilizes cattle dung as the substrate. In the recent years, owing to its high content of biodegradable compounds, algal biomass has emerged as a potential feedstock for biogas production. Moreover, the ability of algae to treat wastewater and fix CO2 from waste gas streams makes it an environmental friendly and economically feasible feedstock. The present review focuses on the possibility of utilizing wastewater as the nutrient and waste gases as the CO2 source for algal biomass production and subsequent biogas generation. Studies describing the various harvesting methods of algal biomass as well as its anaerobic digestion have been compiled and discussed. Studies targeting the most recent advancements on biogas enrichment by algae have been discussed. Apart from highlighting the various advantages of utilizing algal biomass for biogas production, limitations of the process such as cell wall resistivity towards digestion and inhibitions caused due to ammonia toxicity and the possible strategies for overcoming the same have been reviewed. The studies compiled in the present review indicate that if the challenges posed in translating the lab scale studies on phycoremediation and biogas production to pilot scale are overcome, algal biogas could become the sustainable and economically feasible source of renewable energy.  相似文献   

20.
The production of energy crops for farm-scale anaerobic digestion (AD) can affect emissions of greenhouse gases (GHG) in a number of ways. Some examples are: fugitive CH4 emissions from the digester and the storage of the digestate, emissions of N2O from soil and emissions of CO2 from farm machinery. Moreover, uptake of AD may be accompanied by changes in the way the farm is operated, which may affect GHG emissions. The scale of these emissions was assessed from published data for the biogas feedstocks cattle slurry and grass silage. Emissions were compared to references representing current farm operation and energy generation by fossil fuels. Feeding the digester with cattle slurry for the entire year did not result in reduced emissions due to relatively high emissions from stored raw slurry in summer. If grass was used for digester feedstock, the level of N2O emissions from the crop was the most important factor for the GHG balance of farm-scale AD. If N2O emissions were low, biogas realised substantial savings of GHG in the order of 1 t CO2 equivalents per hectare per year. At a high level of N2O emissions, energy cropping might even result in increased GHG emissions compared to fossil fuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号