共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Dahinden P Auchli Y Granjon T Taralczak M Wild M Dimroth P 《Archives of microbiology》2005,183(2):121-129
The oxaloacetate decarboxylase (OAD) Na+ pump consists of subunits , , and , which are expressed from an oadGAB gene cluster present in various anaerobic bacteria. Vibrio cholerae has two copies of oad genes, which are termed oad-1 and oad-2. The oad-2 genes are part of the citrate fermentation operon, while the oad-1 genes are flanked by genes encoding products not involved in a catabolic pathway. The gene sequences of oad-1 and oad-2 of V. cholerae strain O395-N1 were determined. The apparent frameshift in the published sequence of the oadA-2 gene from V. cholerae El Tor N16961 was not present in strain O395-N1. Upon anaerobic growth of V. cholerae on citrate, exclusively the oad-2 genes are expressed. OAD was isolated from these cells by monomeric avidin–Sepharose affinity chromatography. The enzyme was of higher specific activity than that from Klebsiella pneumoniae and was significantly more stable. Decarboxylase activity was Na+ dependent, and the activation profile showed strong cooperativity with a Hill coefficient nH=1.8. Oxalate and oxomalonate inhibited the enzyme with half-maximal concentrations of 10 M and 200 M, respectively. After reconstitution into proteoliposomes, the enzyme acted as a Na+ pump. With size-exclusion chromatography, the enzyme eluted in a symmetrical peak at a retention volume corresponding to an apparent molecular mass of approximately 570 kDa, suggesting a tetrameric structure for OAD-2. The two oad gene clusters were heterologously expressed in Escherichia coli, and the decarboxylases were isolated from the host cells. 相似文献
4.
Archaeoglobus fulgidus harbors three consecutive and one distantly located gene with similarity to the oxaloacetate decarboxylase Na+ pump of Klebsiella pneumoniae (KpOadGAB). The water-soluble carboxyltransferase (AfOadA) and the biotin protein (AfOadC) were readily synthesized in Escherichia coli, but the membrane-bound subunits AfOadB and AfOadG were not. AfOadA was affinity purified from inclusion bodies after refolding and AfOadC was affinity purified from the cytosol. Isolated AfOadA catalyzed the carboxyltransfer from [4-14C]-oxaloacetate to the prosthetic biotin group of AfOadC or the corresponding biotin domain of KpOadA. Conversely, the carboxyltransferase domain of KpOadA exhibited catalytic activity not only with its pertinent biotin domain but also with AfOadC. 相似文献
5.
Mechanisms of antioxidant effect of polyamines were studied in dependence on the strength of superoxide stress. Under conditions of weak stress, polyamines from Escherichia coli cultures were shown to function mainly as a scavenger of free superoxide radicals, whereas under conditions of strong stress they mainly acted as positive modulators of antioxidant genes. Spectrofluorimetry was used to show that both polyamine-dependent mutants and wild type cells treated with inhibitors of polyamine synthesis contained an elevated amount of free oxygen radicals, which could be decreased to the normal level by addition of exogenous polyamines. Under conditions of strong stress, polyamines positively influenced expression of the soxRS regulon genes of antioxidant defense, which was accompanied by an increase in the quantity (activity) of their gene products, such as glucose-6-phosphate dehydrogenase (Zwf) and fumarase (FumC). These effects led to an increase in the number of live cells in the cultures subjected to superoxide stress. 相似文献
6.
7.
An S-adenosylmethionine synthetase gene (metK) from Streptomyces spectabilis was cloned into an expression plasmid under the control of an inducible T7 promoter and introduced into a strain of Escherichia coli (BAP1(pBP130/pBP144)) capable of producing the polyketide product 6-deoxyerythronolide B (6-dEB). The metK coexpression in BAP1(pBP130/pBP144) improved the specific production of 6-dEB from 10.86 to 20.08 mg l−1
. In an effort to probe the reason for this improvement, a series of gene deletion and expression experiments were conducted
based on a metK metabolic pathway that branches between propionyl-CoA (a 6-dEB precursor) and autoinducer compounds. The deletion and expression
studies suggested that the autoinducer pathway had a larger impact on improved 6-dEB biosynthesis. Supporting these results
were experiments demonstrating the positive effect conditioned media (the suspected location of the autoinducer compounds)
had on 6-dEB production. Taken together, the results of this study show an increase in heterologous 6-dEB production concomitant
with heterologous metK gene expression and suggest that the mechanism for this improvement is linked to native autoinducer compounds. 相似文献
8.
Yu. V. Orlova N. A. Myasoedov E. B. Kirichenko Yu. V. Balnokin 《Russian Journal of Plant Physiology》2009,56(2):200-210
Two morphological forms of wormwood Artemisia lerchiana (f. erecta and f. nutans) and A. pauciflora Web. (morphological form erecta) were grown on sand culture at a range of NaCl concentrations in the nutrient medium and then assayed for Na+, K+, and Cl? content in various organs. In addition, the content of mono-, di-, and trisaccharides and multiatomic alcohols (mannitol and glycerol); water content; and organ biomass were determined. All plants examined showed high NaCl tolerance, comparable to that of halophytes. They were able to maintain high tissue hydration under conditions of salinity-induced growth suppression. The intracellular osmotic pressure in wormwood organs was mainly determined by the presence of Na+, K+, and Cl?, as well as by mono-, di-, and trisaccharides, mannitol, and glycerol. The high content of Na+ and Cl? in wormwood organs was also observed in the absence of salinity, which implies the ability of these organs to absorb ions from diluted NaCl solutions and accumulate ions in cells of their tissues. With the increase in salinity, the content of Na+ and Cl? in roots and leaves increased to even higher levels. It is concluded that the ability of wormwood plants to absorb and accumulate inorganic ions provides for sustainable high intracellular osmotic pressure and, accordingly, low water potential under drought and salinity conditions. Growing plants under high salinity lowered the content of monosaccharides in parallel with accumulation of the trisaccharide raffinose. It is supposed that soluble carbohydrates and multiatomic alcohols are not only significant for osmoregulation but also perform a protective function in wormwood plants. The lower osmotic pressure in root cells compared to that in leaf cells of all plants examined was mainly due to the gradient distribution of K+ and Cl? between roots and leaves. The two Artemisia species and two morphological forms of A. lerchiana did not differ appreciably in the ways of water balance regulation. It is found that different morphologies of two A. lerchiana forms are unrelated to variations in intracellular osmotic and turgor pressures. 相似文献
9.
Summary. Hydrogensquarates of dipeptide l-threonyl-l-serine (H-Thr-Ser-OH) and l-serine (HSq × Ser) have been synthesized, isolated and spectroscopic characterized by solid-state linear-polarized IR-spectroscopy, 1H- and 13C-NMR, ESI-MS and HPLC with tandem masspectrometry (MS-MS) methods. The structures of the salts and neutral dipeptide have
been predicted theoretically by ab initio calculations. In the case of H-Thr-Ser-OH the theoretical data are supported by IR-LD ones. The hydrogensquarates consist in positive charged dipeptide or amino acid
moiety and negative hydrogensquarate anion (HSq) stabilizing by strong intermolecular hydrogen bonds. The data about the l-serine hydrogensquarate are compared with known crystallographic data thus indicating a good correlation between the theoretical
predicted structures and experimentally obtained by single crystal X-ray diffraction. 相似文献
10.
A two-parameter statistical model was used to predict the solubility of 96 putative virulence-associated proteins of Flavobacterium psychrophilum (CSF259-93) upon over expression in Escherichia coli. This analysis indicated that 88.5% of the F. psychrophilum proteins would be expressed as insoluble aggregates (inclusion bodies). These solubility predictions were verified experimentally
by colony filtration blot for six different F. psychrophilum proteins. A comprehensive analysis of codon usage identified over a dozen codons that are used frequently in F. psychrophilum, but that are rarely used in E. coli. Expression of F. psychrophilum proteins in E. coli was often associated with production of minor molecular weight products, presumably because of the codon usage bias between
these two organisms. Expression of recombinant protein in the presence of rare tRNA genes resulted in marginal improvements
in the expressed products. Consequently, Vibrio parahaemolyticus was developed as an alternative expression host because its codon usage is similar to F. psychrophilum. A full-length recombinant F. psychrophilum hemolysin was successfully expressed and purified from V. parahaemolyticus in soluble form, whereas this protein was insoluble upon expression in E. coli. We show that V. parahaemolyticus can be used as an alternate heterologous expression system that can remedy challenges associated with expression and production
of F. psychrophilum recombinant proteins. 相似文献
11.
Ariadna Peremarti Ludovic Bassie Paul Christou Teresa Capell 《Plant molecular biology》2009,70(3):253-264
Polyamines are known to play important roles in plant stress tolerance but it has been difficult to determine precise functions
for each type of polyamine and their interrelationships. To dissect the roles of putrescine from the higher polyamines spermidine
and spermine, we generated transgenic rice plants constitutively expressing a heterologous S-adenosylmethionine decarboxylase (SAMDC) gene from Datura stramonium so that spermidine and spermine levels could be investigated while maintaining a constant putrescine pool. Whereas transgenic
plants expressing arginine decarboxylase (ADC) produced higher levels of putrescine, spermidine and spermine, and were protected from drought stress, transgenic plants
expressing SAMDC produced normal levels of putrescine and showed drought symptoms typical of wild type plants under stress,
but the transgenic plants showed a much more robust recovery on return to normal conditions (90% full recovery compared to
25% partial recovery for wild type plants). At the molecular level, both wild type and transgenic plants showed transient
reductions in the levels of endogenous ADC1 and SAMDC mRNA, but only wild type plants showed a spike in putrescine levels under stress. In transgenic plants, there was no spike
in putrescine but a smooth increase in spermine levels at the expense of spermidine. These results confirm and extend the
threshold model for polyamine activity in drought stress, and attribute individual roles to putrescine, spermidine and spermine. 相似文献
12.
The six most toxic Pakistani isolates of Bacillus thuringiensis (SBS Bt-23, 29, 34, 37, 45 and 47), which were previously characterized for their toxicity against larvae of mosquito, Anopheles stephensi, and the presence of cry4 gene, were used for cry11 (cry4D) gene amplification. A 1.9-kb DNA fragment of cry11 gene was PCR-amplified, cloned in expression vector pT7-7, and then used for transformation of E. coli BL21C. The optimum expression was obtained with 1 mM IPTG at 37°C for 3 h. This gene showed different percentage homologies
at protein level with scattered mutations in the toxic region. Biotoxicity assay of recombinant protein showed that Cry11
of SBS Bt 45 (DAB Bt 5) was the most toxic protein against third instar larvae of mosquito, A. stephensi, and has potentiality of a bioinsecticide against mosquitoes. 相似文献
13.
Previous work from our laboratory has shown that most of Bacillus thuringiensis strains possess the ability to produce melanin in the presence of l-tyrosine at elevated temperatures (42 °C). Furthermore, it was shown that the melanin produced by B. thuringiensis was synthesized by the action of tyrosinase, which catalyzed the conversion of l-tyrosine, via l-DOPA, to melanin. In this study, the tyrosinase-encoding gene (mel) from B. thuringiensis 4D11 was cloned using PCR techniques and expressed in Escherichia coli DH5 . A DNA fragment with 1179 bp which contained the intact mel gene in the recombinant plasmid pGEM1179 imparted the ability to synthesize melanin to the E. coli recipient strain. The nucleotide sequence of this DNA fragment revealed an open reading frame of 744 bp, encoding a protein of 248 amino acids. The novel mel gene from B.thuringiensis expressed in E. coli DH5 conferred UV protection on the recipient strain. 相似文献
14.
Xin Zhou Zhengping Zhang Xiaohe Jia Yifan Wu Lan Luo Zhimin Yin 《World journal of microbiology & biotechnology》2008,24(8):1267-1272
Bacillus subtilis glutamine synthetase (GS) was highly expressed (about 86% of total protein) as soluble protein in Escherichia coli BL21(DE3) containing pET28a-glnA, which was induced by 0.4 mM IPTG in LB medium, and maximal theanine-forming activity of
the recombinant GS induced in LB is 6.4 U/mg at a series concentration (0–100 mM) of Mn2+ at optimal pH 7.5. In order to get GS with high theanine-forming activity, safety, and low cost for food and pharmaceutics
industry, M9-A (details are described in “Materials and methods”) and 0.1% (w/v) lactose were selected as culture medium and
inducer respectively. Recombinant GS was also highly expressed (84% of total protein) and totally soluble in M9-A and the
specific activity of the recombinant GS is 6.2 U/mg which is approximate to that (6.4 U/mg) induced in LB in the presence
of 10 mM Mn2+ at optimal pH 7.5. The activity is markedly higher activated by Mn2+ than that by other nine bivalent cations. Furthermore, M9-B (5 μM Mn2+ was added into M9-A) was used to culture the recombinant strain and theanine-forming activity of the recombinant GS induced
in M9-B was improved 20% (up to 7.6 U/mg). Finally, theanine production experiment coupled with yeast fermentation system
was carried out in a 1.0 ml reaction system with 0.1 mg crude GS from M9-B or M9-A, and the yield of theanine were 15.3 and
13.1 g/L by paper chromatography and HPLC, respectively. 相似文献
15.
Inui M Suda M Kimura S Yasuda K Suzuki H Toda H Yamamoto S Okino S Suzuki N Yukawa H 《Applied microbiology and biotechnology》2008,77(6):1305-1316
A recombinant butanol pathway composed of Clostridium acetobutylicum ATCC 824 genes, thiL, hbd, crt, bcd-etfB-etfA, and adhe1 (or adhe) coding for acetyl-CoA acetyltransferase (THL), β-hydroxybutyryl-CoA dehydrogenase (HBD), 3-hydroxybutyryl-CoA dehydratase
(CRT), butyryl-CoA dehydrogenase (BCD), butyraldehyde dehydrogenase (BYDH), and butanol dehydrogenase (BDH), under the tac promoter control was constructed and was introduced into Escherichia coli. The functional expression of these six enzymes was proved by demonstrating the corresponding enzyme activities using spectrophotometric,
high performance liquid chromatography and gas chromatography analyses. The BCD activity, which was not detected in E. coli previously, was shown in the present study by performing the procedure from cell extract preparation to activity measurement
under anaerobic condition. Moreover, the etfA and etfB co-expression was found to be essential for the BCD activity. In the case of BYDH activity, the adhe gene product was shown to have higher specificity towards butyryl-CoA compared to the adhe1 product. Butanol production from glucose was achieved by the highly concentrated cells of the butanologenic E. coli strains, BUT1 with adhe1 and BUT2 with adhe, under anaerobic condition, and the BUT1 and BUT2 strains were shown to produce 4 and 16-mM butanol with 6- and 1-mM butyrate
as a byproduct, respectively. This study reports the novel butanol production by an aerobically pregrown microorganism possessing
the genes of a strict anaerobe, Clostridium acetobutylicum. 相似文献
16.
An effective protein expression system was constructed in Escherichia coli using the promoter of the tyrosine phenol-lyase (tpl) gene of Erwinia herbicola. This system involves a mutant form of the TyrR protein with an enhanced ability to activate tpl and the TutB protein with an ability to transport L-tyrosine (an inducer of Tpl). The highest expression level obtained for this system was more than twice that obtained for
the tac system, although it was lower than the level obtained for the T7 system, as revealed with the lac-reporter assay and SDS-polyacrylamide gel electrophoresis. 相似文献
17.
To elucidate the physiological adaptation of Escherichia coli due to cra gene knockout, a total of 3,911 gene expressions were investigated by DNA microarray for continuous culture. About 50 genes
were differentially regulated for the cra mutant. TCA cycle and glyoxylate shunt were down-regulated, while pentose phosphate (PP) pathway and Entner Doudoroff (ED)
pathway were up-regulated in the cra mutant. The glucose uptake rate and the acetate production rate were increased with less acetate consumption for the cra mutant. To identify the genes controlled by Cra protein, the Cra recognition weight matrix from foot-printing data was developed
and used to scan the whole genome. Several new Cra-binding sites were found, and some of the result was consistent with the
DNA microarray data. The ED pathway was active in the cra mutant; we constructed cra.edd double genes knockout mutant to block this pathway, where the acetate overflowed due to the down-regulation of aceA,B and icd gene expressions. Then we further constructed cra.edd.iclR triple genes knockout mutant to direct the carbon flow through the glyoxylate pathway. The cra.edd.iclR mutant showed the least acetate production, resulting in the highest cell yield together with the activation of the glycolysis
pathway, but the glucose consumption rate could not be improved.
Dayanidhi Sarkar and Khandaker Al Zaid Siddiquee have contributed equally. 相似文献
18.
Using 2-dimensional gel electrophoresis, the Escherichia coli proteome response to a heat-shock stress was analyzed and a 1.6-fold increase of malate dehydrogenase was observed even under the heat-shock condition where the total number of soluble proteins decreased by about 5%. We subsequently demonstrated that, as an N-terminus fusion expression partner, malate dehydrogenase facilitated the folding of, and dramatically increased the solubility of, many aggregation-prone heterologous proteins in E. coli cytoplasm. Therefore, malate dehydrogenase is well suited for production of a biologically active fusion mutant of cutinase (Pseudomonas putida origin) that is currently of considerable to biotechnology and commercial industries. 相似文献
19.
Summary. Optically pure (S)-3-p-hydroxyphenyllactic acid derivatives are important intermediates of peroxisome proliferator-activated receptor α/γ dual agonists
and heteropeptides. Many efforts have been made for synthesis of those intermediates, but there exist some flaws yet. We observed
that dielectric constants of organic solvents drastically affected diazotization of O-benzyl-L-tyrosine. Optically pure (S)-3-p-benzyloxyphenyllactic acid was obtained by simple recrystallization when DMF or DMSO of higher dielectric constant was used
as a co-solvent in diazotization of O-benzyl-L-tyrosine. It was easily turned into various optically pure (S)-3-p-hydroxyphenyllactic acid derivatives. 相似文献
20.
In Shigella and enteroinvasive Escherichia coli (EIEC), the etiologic agents of shigellosis in humans, the determinants responsible for entry of bacteria into and dissemination within epithelial cells are encoded by a virulence plasmid. To understand the evolution of the association between the virulence plasmid and the chromosome, we performed a phylogenetic analysis using the sequences of four chromosomal genes (trpA, trpB, pabB, and putP) and three virulence plasmid genes (ipaB, ipaD, and icsA) of a collection of 51 Shigella and EIEC strains. The phylogenetic tree derived from chromosomal genes showed a typical star phylogeny, indicating a fast diversification of Shigella and EIEC groups. Phylogenetic groups obtained from the chromosomal and plasmidic genes were similar, suggesting that the virulence plasmid and the chromosome share similar evolutionary histories. The few incongruences between the trees could be attributed to exchanges of fragments of different plasmids and not to the transfer of an entire plasmid. This indicates that the virulence plasmid was not transferred between the different Shigella and EIEC groups. These data support a model of evolution in which the acquisition of the virulence plasmid in an ancestral E. coli strain preceded the diversification by radiation of all Shigella and EIEC groups, which led to highly diversified but highly specialized pathogenic groups. 相似文献