首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A membrane adsorption procedure was used to concentrate infectious bovine rhinotracheitis virus from 1-liter quantities of distilled water. Cellulose nitrate membrane filters (0.45-mum pore size) efficiently adsorbed this herpesvirus from water, and virus was recovered from the membrane by elution with 10 ml of fetal calf serum during sonic treatment. The average recovery rate was 70%.  相似文献   

2.
A method is described for the concentration of an enterovirus from large volumes of tap water by addition of small amounts of aluminum chloride to enhance virus removal by membrane filters. Tap water treated with 2 X 10(-5) M aluminum chloride showed a slight decrease in pH (less than 0.5), a slight increase in turbidity, and enhanced removal of poliovirus by membrane filters. Virus was quantitatively recovered by treating the filters with a basic buffer, and this eluate was reconcentrated to a small volume by adsorption to aluminum hydroxide flocs. Using these procedures, virus from 1,000 liters of water was reduced to a final eluate of 20 to 80 ml with a mean recovery of 70%.  相似文献   

3.
A method is described for the concentration of an enterovirus from large volumes of tap water by addition of small amounts of aluminum chloride to enhance virus removal by membrane filters. Tap water treated with 2 X 10(-5) M aluminum chloride showed a slight decrease in pH (less than 0.5), a slight increase in turbidity, and enhanced removal of poliovirus by membrane filters. Virus was quantitatively recovered by treating the filters with a basic buffer, and this eluate was reconcentrated to a small volume by adsorption to aluminum hydroxide flocs. Using these procedures, virus from 1,000 liters of water was reduced to a final eluate of 20 to 80 ml with a mean recovery of 70%.  相似文献   

4.
Simian rotavirus SA-11 was concentrated from tap water by adsorption to and elution from microporous filters, followed by organic flocculation. Two types of filters were compared for their ability to concentrate the virus. Both Zeta Plus 60S and Cox AA type M-780 filters were efficient for virus adsorption, but the efficiency of virus elution was higher with Zeta Plus than with Cox filters. Optimum conditions for virus recovery from Zeta Plus filters included an input water pH of 6.5 to 7.5 and the use of 3% beef extract (pH 9.0) for elution. Under these conditions, an average of 62 to 100% of the virus was recovered in the concentrate. Organic flocculation was used as a second-step concentration method, with average recoveries of 47 to 69%. When the two methods were used to concentrate small numbers (7 to 75 PFU/liter) of input rotavirus, an average of 75 +/- 40% recovery was achieved. With large volumes of input water, however, recovery was reduced to 16 +/- 7%.  相似文献   

5.
Simian rotavirus SA-11 was concentrated from tap water by adsorption to and elution from microporous filters, followed by organic flocculation. Two types of filters were compared for their ability to concentrate the virus. Both Zeta Plus 60S and Cox AA type M-780 filters were efficient for virus adsorption, but the efficiency of virus elution was higher with Zeta Plus than with Cox filters. Optimum conditions for virus recovery from Zeta Plus filters included an input water pH of 6.5 to 7.5 and the use of 3% beef extract (pH 9.0) for elution. Under these conditions, an average of 62 to 100% of the virus was recovered in the concentrate. Organic flocculation was used as a second-step concentration method, with average recoveries of 47 to 69%. When the two methods were used to concentrate small numbers (7 to 75 PFU/liter) of input rotavirus, an average of 75 ± 40% recovery was achieved. With large volumes of input water, however, recovery was reduced to 16 ± 7%.  相似文献   

6.
Micro-fiber glass filters from Gelman, Filterite, Johns-Manville, and Whatman were compared with Millipore membrane filters on the basis of their virus adsorbancy, flow rate, clogging resistance, and virus concentration efficiency by using tap water at 2 nephelometric turbidity units. As virus adsorbants the Johns-Manville D39, Filterite 0.25-micron, Filterite 0.45-micron, and Millipore 0.45-micron filters were the most efficient, retaining more than 99% of the added virus in water at pH 3.5 and 0.0005 M aluminum chloride. The Johns-Manville D79 and D49 filters retained 92 and 96% of the virus, respectively, whereas the Whatman GF-D, Whatman GF-F, Gelman A-E, and Millipore AP-20 filters retained only 28, 78, 56, and 34% of the virus, respectively. The best flow rate and clogging resistance were obtained with the Johns-Manville D79 filter or with this filter acting as a prefilter to the Johns-Manville D49, Johns-Manville D39, or Filterite 0.45-micron filter. Finally, poliovirus experimentally seeded in 20 liters of tape water was recovered from Johns-Manville D79-Johns-Manville D39 or Johns-Manville D79-Filterite 0.45 micron 142-mm filter combinations was a efficiencies of 86 and 85%, respectively.  相似文献   

7.
Concentration of enteroviruses from estuarine water.   总被引:11,自引:10,他引:1       下载免费PDF全文
Pleated cartridge filters readily adsorb viruses in estuarine water at low pH containing aluminum chloride. Adsorbed viruses are efficiently recovered by treating filters with glycine buffer at high pH. By using these procedures, it was possible to recover approximately 70% of the poliovirus added to 400 liters of estuarine water in 3 liters of filter eluate. Reconcentration of virus in the filter eluate in small volumes that are convenient for viral assays was more difficult. Reconcentration methods described previously for eluates from filters that process tap water or treated wastewater were inadequate when applied to eluates from filters used to process estuarine water containing large amounts of organic compounds. Two methods were found to permit efficient concentration of virus in filter eluates in small volumes. In both methods, virus in 3 liters of filter eluate was adsorbed to aluminum hydroxide flocs and then recovered in approximately 150 ml of buffered fetal calf serum. Additional reductions in volume were achieved by ultrafiltration or hydroextraction. By using these procedures 60 to 80% of the virus in 3 liters of filter eluate could be recovered in a final volume of 10 to 40 ml.  相似文献   

8.
Pleated cartridge filters readily adsorb viruses in estuarine water at low pH containing aluminum chloride. Adsorbed viruses are efficiently recovered by treating filters with glycine buffer at high pH. By using these procedures, it was possible to recover approximately 70% of the poliovirus added to 400 liters of estuarine water in 3 liters of filter eluate. Reconcentration of virus in the filter eluate in small volumes that are convenient for viral assays was more difficult. Reconcentration methods described previously for eluates from filters that process tap water or treated wastewater were inadequate when applied to eluates from filters used to process estuarine water containing large amounts of organic compounds. Two methods were found to permit efficient concentration of virus in filter eluates in small volumes. In both methods, virus in 3 liters of filter eluate was adsorbed to aluminum hydroxide flocs and then recovered in approximately 150 ml of buffered fetal calf serum. Additional reductions in volume were achieved by ultrafiltration or hydroextraction. By using these procedures 60 to 80% of the virus in 3 liters of filter eluate could be recovered in a final volume of 10 to 40 ml.  相似文献   

9.
Basic solutions of beef extract and casein were able to elute poliovirus adsorbed to four membrane filters with different chemical compositions. Hydrolyzed protein and individual amino acids were able to elute virus adsorbed to certain filters but were unable to elute virus adsorbed to other filters efficiently. A solution of 4 M urea buffered at pH 9 with 0.05 M lysine was able to elute greater than 60% of the virus adsorbed to each of the filters tested. Certain solutions of amino acids were capable of eluting virus adsorbed to one filter but permitted adsorption of virus to another filter with a different chemical composition. Acidic amino acids could interfere with elution of virus from membrane filters. Aromatic compounds with an amino group attached to the ring were good eluents for virus adsorbed to epoxy-fiberglass membrane filters. In contrast, aromatic compounds with other substituents were generally poor eluents.  相似文献   

10.
Concentration of Enteroviruses on Membrane Filters   总被引:35,自引:3,他引:32       下载免费PDF全文
Enteroviruses can be made to adsorb or to pass through membrane filters by manipulation of the suspending medium. Salts facilitate virus adsorption, but membrane-coating components (MCC) interfere. Because cells release MCC into the culture medium during viral growth, MCC must be removed before virus can be adsorbed to membranes. Adsorbed virus can be eluted with diluents containing MCC (cell extracts or serum) or agents that reduce surface tension (sodium lauryl sulfate). By membrane adsorption and elution, enteroviruses can be readily concentrated and quantitatively recovered from crude virus harvests.  相似文献   

11.
Pfizer selective enterococcus (PSE) and KF agars were compared for their recovery of fecal streptococci from sewage effluent on membrane filters. The results showed that PSE agar is highly selective for the enterococci. The tan color resulting from esculin hydrolysis, which was not always visible on the surfaces of the colonies, is not considered a necessary differential characteristic on PSE agar since more than 90% of all colonies recovered on membrane filters were confirmed as fecal streptococci and 86% were confirmed as enterococci. The detection of esculin hydrolysis on membrane filters was not improved by using the new Millipore type HC filter. KF agar recovered significantly greater numbers of organisms but was not as selective, with 83% of the typical colonies being confirmed as fecal streptococci and 54% as enterococci. An attempt to improve the selectivity of KF agar while retaining its inclusiveness by incubation at 45 C was not successful.  相似文献   

12.
Effects of humic materials on virus recovery from water.   总被引:2,自引:2,他引:0       下载免费PDF全文
Humic and fulvic acids were tested for their ability to interfere with virus recovery by microporous filters. Two electropositively charged types of filter (Seitz S and Zeta Plus 60S) were used to concentrate poliovirus in the presence of humic materials. Humic acid inhibited virus adsorption, but even at the highest humic acid concentrations tested (200 mg/liter), 30 to 40% of the virus was recovered by the filters. Fulvic acid, tested with Zeta Plus filters, did not affect virus recovery. For comparison, two electronegatively charged filter types were tested (Cox and Balston). These two types of filter were more sensitive to interference at lower concentrations of humic acid than the more positively charged filters. With Balston filters, at humic acid concentrations above 10 mg/liter, most of the virus was recovered in the filtrate. Fulvic acid, tested with Balston filters, did not interfere with virus recovery. With the electropositively charged filters, the humic materials adsorbed efficiently, even at high input concentrations. Interference with virus adsorption occurred at humic acid concentrations which were below the level of saturation of the filters. In addition, in high-volume experiments, humic acid led to premature blockage of the filters. The efficiency of virus recovery by a second concentration step, organic flocculation of the filter eluate, was tested. For all the filter types tested, this procedure was not affected by the presence of humic or fulvic acid in the input water.  相似文献   

13.
Humic and fulvic acids were tested for their ability to interfere with virus recovery by microporous filters. Two electropositively charged types of filter (Seitz S and Zeta Plus 60S) were used to concentrate poliovirus in the presence of humic materials. Humic acid inhibited virus adsorption, but even at the highest humic acid concentrations tested (200 mg/liter), 30 to 40% of the virus was recovered by the filters. Fulvic acid, tested with Zeta Plus filters, did not affect virus recovery. For comparison, two electronegatively charged filter types were tested (Cox and Balston). These two types of filter were more sensitive to interference at lower concentrations of humic acid than the more positively charged filters. With Balston filters, at humic acid concentrations above 10 mg/liter, most of the virus was recovered in the filtrate. Fulvic acid, tested with Balston filters, did not interfere with virus recovery. With the electropositively charged filters, the humic materials adsorbed efficiently, even at high input concentrations. Interference with virus adsorption occurred at humic acid concentrations which were below the level of saturation of the filters. In addition, in high-volume experiments, humic acid led to premature blockage of the filters. The efficiency of virus recovery by a second concentration step, organic flocculation of the filter eluate, was tested. For all the filter types tested, this procedure was not affected by the presence of humic or fulvic acid in the input water.  相似文献   

14.
Microbiological- and food-grade beef extracts, protein hydrolytic, enzymatic and autolytic digestion products, and whole protein materials were examined for their potential effectiveness for eluting adsorbed enteroviruses from membrane filters with observed efficiencies ranging from less than 1 to 69%. Concentration of enteroviruses from solutions of these protein and protein-derived products by organic flocculation ranged in efficiency from 2 to 125%. Both elution and concentration were dependent upon virus type, as well as nature, source, and production lot of the material being tested. Determining the efficiency of virus concentration was complicated by virus aggregation and apparent virus inactivation by low pH. Effectiveness of concentrating viruses by organic flocculation from solutions prepared with the various test materials seemed independent of the amount of precipitate produced during the flocculation procedure. Quality assurance tests were proposed by which solutions prepared from beef extracts, whole protein, and protein-derived materials could be evaluated for use in eluting adsorbed viruses from membrane filters and for concentrating viruses by organic flocculation. Food-grade beef extract seemed equal to microbiological-grade beef extract in terms of both virus elution and concentration. Several of the nonbeef extract materials evaluated were as effective as beef extract for virus concentration, but were less effective for virus elution.  相似文献   

15.
The sensitivity of several microporous virus-adsorbent media for reliably detecting low levels of poliovirus from 380 and 1,900 liters of drinking water by use of the tentative standard method was investigated. The virus-adsorbent media tested were (i) nitrocellulose membrane filters, (ii) epoxy-fiber glass-asbestos filters, (iii) yarn-wound fiber glass depth filters, and (iv) epoxy-fiber glass filter tubes. Virus was adsorbed to the filter media at pH 3.5 and eluted with glycine buffer, pH 11.5. The results from 44 samples demonstrated that poliovirus was detected with a 95% reliability at mean virus input levels of 3 to 7 plaque-forming units/380 liters when 1,900 liters of water was sampled. At mean virus input levels of less than 1 to 2 plaque-forming units/380 liters, the detection reliability was 66% in 76 samples when 1,900 liters of water was sampled. No significant difference in virus detection sensitivity was observed among the various virus adsorbent media tested. Overall virus recovery efficiency ranged from 28 to 42%, with a grand average of 35%. Members of the coxsackievirus groups A and B, echovirus, and adenovirus were also detected when 380 and 1,900 liters of water were sampled. These experimental observations attest to the sensitivity of the tentative standard method for detecting low levels of virus in large volumes of drinking water.  相似文献   

16.
The sensitivity of several microporous virus-adsorbent media for reliably detecting low levels of poliovirus from 380 and 1,900 liters of drinking water by use of the tentative standard method was investigated. The virus-adsorbent media tested were (i) nitrocellulose membrane filters, (ii) epoxy-fiber glass-asbestos filters, (iii) yarn-wound fiber glass depth filters, and (iv) epoxy-fiber glass filter tubes. Virus was adsorbed to the filter media at pH 3.5 and eluted with glycine buffer, pH 11.5. The results from 44 samples demonstrated that poliovirus was detected with a 95% reliability at mean virus input levels of 3 to 7 plaque-forming units/380 liters when 1,900 liters of water was sampled. At mean virus input levels of less than 1 to 2 plaque-forming units/380 liters, the detection reliability was 66% in 76 samples when 1,900 liters of water was sampled. No significant difference in virus detection sensitivity was observed among the various virus adsorbent media tested. Overall virus recovery efficiency ranged from 28 to 42%, with a grand average of 35%. Members of the coxsackievirus groups A and B, echovirus, and adenovirus were also detected when 380 and 1,900 liters of water were sampled. These experimental observations attest to the sensitivity of the tentative standard method for detecting low levels of virus in large volumes of drinking water.  相似文献   

17.
The efficiency of virus recovery from water was investigated by using a method which enabled the concentration of a mixture of four enteroviruses with determination of their individual recovery efficiencies. The four viruses used (poliovirus 1, coxsackievirus A9, coxsackievirus B1, and echovirus 7) represented each of the four major subgroups of enteroviruses. This method, which was based on selective antibody neutralization, was used to investigate the effects of input water quality on enterovirus concentration by Balston filters (grade C; Balston, Inc., Lexington, Mass.) and organic flocculation. With tap water, the average recovery efficiency of the four viruses was 97%. Concentration from natural waters, including samples from two lakes (Lake Kinneret and the Hula Nature Reserve) and the Mediterranean Sea, resulted in similarly high average recovery efficiencies. Echovirus 7 was recovered with a slightly lower average efficiency from these types of water than were the other viruses. In comparison with other types of water, virus concentration from Jerusalem wastewater generally had a slightly lower efficiency of recovery, ranging from 63 to 75% for each of the viruses, with an overall average of 68%. The ability of each concentration step, membrane filtration or organic flocculation, to recover the viruses from water was assayed. For the filtration step, although there were not large differences in virus recoveries from tap water, echovirus 7 was recovered with the lowest efficiency (72%), and poliovirus 1 was recovered with the highest (87%) efficiency. Overall virus recovery by the filtration step was least efficient for wastewater (73%) and most efficient for seawater (107%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The efficiency of virus recovery from water was investigated by using a method which enabled the concentration of a mixture of four enteroviruses with determination of their individual recovery efficiencies. The four viruses used (poliovirus 1, coxsackievirus A9, coxsackievirus B1, and echovirus 7) represented each of the four major subgroups of enteroviruses. This method, which was based on selective antibody neutralization, was used to investigate the effects of input water quality on enterovirus concentration by Balston filters (grade C; Balston, Inc., Lexington, Mass.) and organic flocculation. With tap water, the average recovery efficiency of the four viruses was 97%. Concentration from natural waters, including samples from two lakes (Lake Kinneret and the Hula Nature Reserve) and the Mediterranean Sea, resulted in similarly high average recovery efficiencies. Echovirus 7 was recovered with a slightly lower average efficiency from these types of water than were the other viruses. In comparison with other types of water, virus concentration from Jerusalem wastewater generally had a slightly lower efficiency of recovery, ranging from 63 to 75% for each of the viruses, with an overall average of 68%. The ability of each concentration step, membrane filtration or organic flocculation, to recover the viruses from water was assayed. For the filtration step, although there were not large differences in virus recoveries from tap water, echovirus 7 was recovered with the lowest efficiency (72%), and poliovirus 1 was recovered with the highest (87%) efficiency. Overall virus recovery by the filtration step was least efficient for wastewater (73%) and most efficient for seawater (107%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Enteroviruses added to 114 liters of dechlorinated tap water were recovered in a 16-ml sample by a two-stage concentration procedure in which different types of membrane filters were used in each concentration stage. Viruses in tap water at pH 3.5 were first adsorbed to 10-in. (ca. 25.4-cm) epoxy-fiber glass filters (Filterite). Viruses adsorbed to these filters were eluted with a solution of 0.2 M sodium trichloroacetate buffered at pH 9 with 0.2 M lysine. Viruses in this solution were adsorbed to 47-mm asbestos filters (Seitz) without pH adjustment or other modification of the solution. Viruses were recovered from the Seitz filters with 16 ml of either Casitone or fetal calf serum at pH 9. With these procedures ca. 45% of several types of enteroviruses added to 114 liters of tap water could be recovered in the final 16-ml sample.  相似文献   

20.
Enteroviruses added to 114 liters of dechlorinated tap water were recovered in a 16-ml sample by a two-stage concentration procedure in which different types of membrane filters were used in each concentration stage. Viruses in tap water at pH 3.5 were first adsorbed to 10-in. (ca. 25.4-cm) epoxy-fiber glass filters (Filterite). Viruses adsorbed to these filters were eluted with a solution of 0.2 M sodium trichloroacetate buffered at pH 9 with 0.2 M lysine. Viruses in this solution were adsorbed to 47-mm asbestos filters (Seitz) without pH adjustment or other modification of the solution. Viruses were recovered from the Seitz filters with 16 ml of either Casitone or fetal calf serum at pH 9. With these procedures ca. 45% of several types of enteroviruses added to 114 liters of tap water could be recovered in the final 16-ml sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号