首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have previously described the safety and immunomodulatory effects of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 in healthy volunteers. The scope of this work was to evaluate the effects of these probiotic strains on the hepatic steatosis of obese rats. We used the Zucker rat as a genetic model of obesity. Zucker-Leprfa/fa rats received one of three probiotic strains, a mixture of L. paracasei CNCM I-4034 and B. breve CNCM I-4035, or a placebo for 30 days. An additional group of Zucker-lean+/fa rats received a placebo for 30 days. No alterations in intestinal histology, in the epithelial, lamina propria, muscular layers of the ileal or colonic mucosa, or the submucosae, were observed in any of the experimental groups. Triacylglycerol content decreased in the liver of Zucker-Leprfa/fa rats that were fed L. rhamnosus, B. breve, or the mixture of B. breve and L. paracasei. Likewise, the area corresponding to neutral lipids was significantly smaller in the liver of all four groups of Zucker-Leprfa/fa rats that received probiotics than in rats fed the placebo. Zucker-Leprfa/fa rats exhibited significantly greater serum LPS levels than Zucker-lean+/fa rats upon administration of placebo for 30 days. In contrast, all four groups of obese Zucker-Leprfa/fa rats that received LAB strains exhibited serum LPS concentrations similar to those of Zucker-lean+/fa rats. Serum TNF-α levels decreased in the Zucker-Leprfa/fa rats that received B. breve, L. rhamnosus, or the mixture, whereas L. paracasei feeding decreased IL-6 levels in the serum of Zucker-Leprfa/fa rats. In conclusion, the probiotic strains reduced hepatic steatosis in part by lowering serum LPS, and had an anti-inflammatory effect in obese Zucker rats.  相似文献   

2.
The activation of endoplasmic reticulum (ER) stress and a reduction of AMP-dependent protein kinase (AMPK) phosphorylation have been described in obesity. We hypothesize that a moderate caloric restriction (CR) might contribute to reducing ER stress and increasing AMPK phosphorylation in peripheral tissues from genetically obese Zucker fa/fa rats and in peripheral blood mononuclear cells (PBMCs).Zucker Lean and Zucker fa/fa rats were fed with chow diet either ad libitum (AL) (C, as controls) or 80% of AL (CR) for 2 weeks, giving rise to four experimental groups: Lean C, Lean CR, fa/fa C and fa/fa CR.CR significantly increased AMPK phosphorylation in the liver, perirenal adipose tissue (PRAT) and PBMCs from fa/fa rats but not in the subcutaneous AT (SCAT), suggesting a reduced response of SCAT to CR. Liver samples of fa/fa rats exhibited an increased mRNA expression of PERK, EIF-2α, XBP-1(s), Chop and caspase 3, which was significantly reduced by CR. PRAT exhibited an overexpression of Edem and PDIA-4 in fa/fa rats, but only PDIA-4 expression was reduced by CR. eIF-2α phosphorylation was significantly increased in all studied tissues from fa/fa rats and reduced by CR. A negative correlation was detected between p-AMPK and p-eIF-2α in the liver, PRAT and PBMCs from fa/fa rats but not in SCAT.This study shows that a moderate CR reduces ER stress and improves AMPK phosphorylation in several peripheral tissues and in circulating PBMCs, suggesting that alterations observed in PBMCs could reflect metabolic alterations associated with obesity.  相似文献   

3.
Docosahexaenoic acid (DHA) is required for neurotransmitter synthesis and learning. Conversion of α-linolenic acid (ALA) to DHA is considered adequate to support brain function in youth, but it is unknown if brain DHA can be maintained in insulin resistant states. This study investigated brain fatty acid and desaturase activities in young insulin resistant Zucker rats on diets with and without DHA. Male fa/fa and lean rats were fed diets enriched with flaxseed (FXO, ALA: 35.5% fatty acids), menhaden (MO, DHA: 9.2%) or safflower oil (SO, linoleic acid: 54.1%) for 9 weeks, n=8 per diet per genotype. Compared to lean, the 15 week old fa/fa rats were obese (56% heavier) and insulin-resistant (>18-fold in homeostasis model assessment of insulin resistance). The forebrain of fa/fa rats had higher palmitoleic (16:1n-7) and dihomo-γ-linolenic (20:3n-6) acids, and higher Δ9, Δ6 but lower Δ5 (all P≤.006) desaturase indices than lean. The Δ9 and Δ6 desaturase indices positively, while the Δ5 negatively (all P≤.01) correlated with insulin resistance. The Δ9 desaturase index positively correlated with adiposity index. The percentage of forebrain DHA of fa/fa rats was lower (P=.011) than lean rats when fed FXO diet while there was no difference (P>.05) between fa/fa and lean rats fed MO or SO diet. Thus, the alterations in the fatty acid and desaturase indices in the brain were consistent inhibited forebrain synthesis of DHA in the fa/fa rats. ALA may not have potential to effectively serve as a precursor for synthesizing DHA for youth forebrain during insulin resistance since Δ5 desaturase activity is limited.  相似文献   

4.
The objective was to examine the effect of polyunsaturated fatty acid type (plant vs fish oil-derived n-3, compared to n-6 fatty acids in the presence of constant proportions of saturated, monounsaturated and polyunsaturated fatty acids) on obesity, insulin resistance and tissue fatty acid composition in genetically obese rats. Six-week-old fa/fa and lean Zucker rats were fed with a 10% (w/w) mixed fat diet containing predominantly flax-seed, menhaden or safflower oils for 9 weeks. There was no effect of dietary lipid on obesity, oral glucose tolerance (except t=60 min insulin), pancreatic function or molecular markers related to insulin, glucose and lipid metabolism, despite increased n-3 fatty acids in muscle and adipose tissue. The menhaden oil diet reduced fasting serum free fatty acids in both fa/fa and lean rats. These data suggest that n-3 composition does not alter obesity and insulin resistance in the fa/fa Zucker rat model when dietary lipid classes are balanced.  相似文献   

5.
The number of high affinity [3H]GDP binding sites in brown adipose tissue mitochondria is normal in obese ( f a / f a ) rats in contrast to the reduced number of low affinity GDP binding sites. Adrenalectomy corrected the loss of low affinity binding sites in fa/fa rats but had no effect on the number of high affinity sites in either lean or obese rats. Equilibrium dialysis was used to show the presence of both high and low affinity binding sites on the purified 32 kdalton protein.  相似文献   

6.
7.
Objective: The objective of this study was to characterize immune function in the fa/fa Zucker rat, and to determine the effects of feeding conjugated linoleic acid (CLA) isomers on immune function. Methods and Procedures: Lean and fa/fa Zucker rats were fed for 8 weeks nutritionally complete diets with different CLA isomers (%wt/wt): control (0%), c9t11 (0.4%), t10c12 (0.4%), or MIX (0.4% c9t11 + 0.4% t10c12). Isolated splenocytes were used to determine phospholipid (PL) fatty acid composition and cell phenotypes, or stimulated with mitogen to determine their ability to produce cytokines, immunoglobulins (Ig), and nitric oxide (NO). Results: Splenocyte PL of fa/fa rats had a higher proportion of total monounsaturated fatty acids and n ?3 polyunsaturated fatty acids (PUFA), and lower n ?6 PUFA and n ?6‐to‐n ?3 PUFA ratio (P < 0.05). Feeding CLA increased the content of CLA isomers into PL, but there were lower proportions of each CLA isomer in fa/fa rats. Splenocytes of fa/fa rats produced more amounts of IgA, IgG, and IgM, NO, and interleukin‐1β (IL‐1β), IL‐6, and tumor necrosis factor‐α (TNF‐α) (P < 0.05). Obese rats fed the t10c12 diet produced less TNF‐α and IL‐1β (lippopolysaccharide (LPS), P < 0.05). Splenocytes of fa/fa rats produced less concanavalin A (ConA)‐stimulated IL‐2 (P < 0.0001) than lean rats, except fa/fa rats fed the c9t11 diet (P < 0.05). Discussion: The c9t11 and t10c12 CLA isomers were incorporated into the membrane PL of the fa/fa Zucker rat, but to a lesser extent than lean rats. Splenocytes of obese rats responded in a proinflammatory manner and had reduced T‐cell function and feeding the t10c12 and c9t11 CLA isomers may improve some of these abnormalities by distinct methods.  相似文献   

8.
The WBN/Kob-Leprfa rat is a new congenic strain for the fa allele of the leptin receptor gene (Lepr). Homozygous (fa/fa) WBN/Kob-Leprfa rats provide a model of non-insulin-dependent diabetes with obesity. Here, we describe the characteristics of this new animal model in detail. At 7 weeks of age, both male and female obese WBN/Kob rats showed inflammatory cell infiltration of the pancreas that suggested pan-pancreatitis and an abnormal OGTT. At 3 months of age, both male and female obese WBN/Kob rats developed overt diabetes mellitus associated with severe chronic pancreatitis. In contrast, lean female WBN/Kob rats do not develop pancreatitis or diabetes. In WBN/Kob rats, this mutation might promote the onset of severe pancreatitis, leading to the rapid development of diabetes mellitus.  相似文献   

9.
Objective: The aim of this study was to evaluate the effects of the selective angiotensin receptor 1 antagonist irbesartan on the growth and differentiation of the adipocytes in obese Zucker fa/fa rats. Research Methods and Procedures: Obese Zucker fa/fa rats were treated by oral route for 3 weeks with irbesartan at doses of 3–10‐30 mg/kg per day. The adipocyte differentiation was evaluated by analyzing tissue samples of white (retroperitoneal) or brown (interscapular) adipose tissue for the presence of peroxisome proliferator activated receptor γ, leptin, and the activity of glycerol‐3‐phosphate dehydrogenase. Results: This study showed that the treatment of obese Zucker fa/fa with irbesartan effectively reduced the differentiation of adipocytes within brown (interscapular) and white (retroperitoneal) adipose tissue. In fact, irbesartan significantly (p < 0.01) and dose‐dependently reduced the tissue levels of leptin, peroxisome proliferator activated receptor γ, and the activity of the enzyme glycerol‐3‐phoshate dehydrogenase accepted markers of adipocyte differentiation. None of the tested doses of irbesartan affected these markers in non‐obese rats. Discussion: The antagonism of the angiotensin receptor 1 receptors with irbesartan reduces the adipogenic activity of angiotensin II in obese Zucker rats, with the endpoint being reduction of the growth and differentiation of the adipocytes within the adipose tissue.  相似文献   

10.
11.
Objective: The metabolism of arachidonic acid (AA) has been shown to be altered in severe insulin resistance that is present in obese (fa/fa) Zucker rats. We examined the effects and mechanism of action of AA on basal and glucose‐stimulated insulin secretion in pancreatic islets isolated from obese (fa/fa) Zucker rats and their homozygous lean (Fa/Fa) littermates. Research Methods and Procedures: Islets were isolated from 10‐ to 12‐week‐old rats and incubated for 45 minutes in glucose concentrations ranging from 3.3 to 16.7 mM with or without inhibitors of the cyclooxygenase or lipoxygenase pathways. Medium insulin concentrations were measured by radioimmunoassay, and islet production of the 12‐lipoxygenase metabolite, 12‐hydroxyeicosatetraenoic acid (12‐HETE), was measured by enzyme immunoassay. Results: In islets from lean animals, AA stimulated insulin secretion at submaximally stimulatory glucose levels (< 11.1 mM) but not at 16.7 mM glucose. In contrast, in islets derived from obese rats, AA potentiated insulin secretion at all glucose concentrations. AA‐induced insulin secretion was augmented in islets from obese compared with lean rats at high concentrations of AA in the presence of 3.3 mM glucose. Furthermore, the inhibitor of 12‐lipoxygenase, esculetin (0.5 μM), inhibited AA‐stimulated insulin secretion in islets from obese but not lean rats. Finally, the islet production of the 12‐HETE was markedly enhanced in islets from obese rats, both in response to 16.7 mM glucose and to AA. Discussion: The insulin secretory response to AA is augmented in islets from obese Zucker rats by a mechanism related to enhanced activity of the 12‐lipoxygenase pathway. Therefore, augmented action of AA may be a mechanism underlying the adaptation of insulin secretion to the increased demand caused by insulin resistance in these animals.  相似文献   

12.
The concentration of the 'uncoupling protein' in brown adipose tissue mitochondria has been measured in lean and obese (ob/ob) mice and Zucker (fa/fa) rats at different ages using a specific radioimmunoassay. During the suckling period the concentration of the protein was similar in normal and mutant animals of both types, despite the decrease in mitochondrial GDP binding observed in the obese. The concentration of uncoupling protein was, however, decreased in adult ob/ob mice and adult Zucker rats compared with their respective lean siblings, in parallel with the decrease in GDP binding. It is concluded that there is a 'masked', or inactive, form of uncoupling protein in young ob/ob mice and fa/fa rats.  相似文献   

13.
The existence of a restriction fragment length polymorphism (RFLP) closely linked to the fatty locus between the Zucker (Z) and Brown Norway (BN) rat strains allows evaluation of early effects of the fatty (fa) gene using offspring of back-crosses (N2) between F1 females and Zucker obese males. We examined several metabolic characteristics of N2 animals to determine if these hybrid animals exhibited similar characteristics of the obese syndrome to those of Zucker rats. Females from crosses of obese male Zucker (fd/fa) and lean female BN (+/+) rats were back-crossed to their sires, resulting in twelve N2 litters. At 9 weeks of age, liver, spleen, interscapular brown fat (IBAT), and gonadal, retroperitoneal (RP), and inguinal fat depots were removed and weighed. Samples of the RP depot were analyzed for cell size and number. Obese N2 rats were hyperphagic, with body weights in the range of those of obese Zucker rats. Obese N2 rats were also hyperinsulinemic [mean f SEM, pU/ml: females, 7.9 ± 0.6 vs. 82.1 f 8.4 (lean vs. obese); males, 10.5 ± 1.6 vs. 128.5 ± 13.4 (lean vs. obese)] and mildly hyperglycemic [mean ± SEM, mg/dl: females, 104.1 ± 2.0 vs. 139.0 ± 14.7 (lean vs. obese); males, 100.9 ± 2.6 vs. 132.0 ± 2.8 (lean vs. obese) p ≤ 0.05]. White fat depots in obese tats were 3 to 7 times heavier than those in lean rats; adipocyte numbers in RP depots were 50% greater in obese than in lean rats; and cell size was more than 3 times larger. IBAT, liver, and spleen were also heavier in obese vs. lean rats, while tail lengths were shorter. Percent lean carcass mass and % carcass protein were about 30% greater in lean vs. obese rats, while % carcass fat in obese rats was 5 times greater than that of lean rats. Thus, phenotypic expression of the fa gene in ZBN hybrid animals, with approximately 25% of their genetic background coming from the BN strain, appears to be similar to that in Zucker rats. Given the similarity of phenotypic expression of the fa gene between the Zucker strain and ZBN hybrids, it is plausible to consider using ZBN hybrids for studies of early manifestations of fa gene action prior to onset of detectable obesity .  相似文献   

14.
The objective of this study was to investigate the effects of liraglutide, an analog of human glucagon-like peptide 1 (GLP1), on WBN/Kob-Leprfa (fa/fa) rats, which spontaneously develop type 2 diabetes mellitus with pancreatic disorder and obesity. Male fa/fa rats (age, 7 wk) were allocated into 4 groups and received liraglutide (37.5, 75, 150 μg/kg SC) or saline (control group) once daily for 4 wk. All rats in the control group became overweight and developed hyperglycemia as they aged. Although the rats given liraglutide showed a dose-dependent reduction in food intake, no significant effects on body weight or fat content occurred. In the liraglutide groups, the development of hyperglycemia was suppressed, even as plasma insulin concentrations increased in a dose-dependent manner. Intravenous glucose tolerance testing of the liraglutide-treated rats confirmed improvement of glucose tolerance and enhanced insulin secretion. Histologic examination revealed increased numbers of pancreatic β-cell type islet cells and increased proliferation of epithelial cells of the small ducts in the liraglutide-treated groups. Although our study did not reveal a significant decrease in obesity after liraglutide administration, the results suggest a marked antidiabetic effect characterized by increased insulin secretion in fa/fa rats with pancreatic disorders.Abbreviations: GLP1, glucagon-like peptide-1; IVGTT, intravenous glucose tolerance testing; T2DM, type 2 diabetes mellitusThe number of patients diagnosed with diabetes has more than doubled over the last 30 y, and diabetes has become an important public health concern worldwide.6 Approximately 90% of patients with diabetes are diagnosed with type 2 diabetes mellitus (T2DM).31 The onset of T2DM is determined by multiple factors that lead to reduced insulin secretion or insulin resistance, including genetic predisposition and lifestyle-associated habits such as lack of exercise, overeating, and obesity. Many drugs are already used clinically to treat T2DM;9,11 nevertheless, the search and development of more efficient and safe drugs is currently underway. In this regard, incretin has recently gained attention as a member of a class of drugs used to treat T2DM.9,11Enteroendocrine cells secret incretin hormones, which augment glucose-induced insulin secretion in response to food ingestion, in a glucose-dependent manner. Currently, the 2 confirmed incretins are glucose-dependent insulinotropic polypeptide and glucagon-like peptide 1 (GLP1). Research has shown that GLP1 derivatives have functions in addition to the promotion of insulin secretion, including facilitation of β-cell proliferation,28 suppression of β-cell apoptosis,12 and promotion of β-cell differentiation or de novo formation of β cells.29,30 GLP1 derivatives have been reported to have multiple nonpancreatic functions, including suppression of appetite and body weight,7,13 suppression of gastric secretions,19 reduction of lipid accumulation in the liver,17 and promotion of sensitivity to insulin in adipose cells and skeletal muscle.8,22WBN/Kob-type male rats are a relevant animal model for diabetes without obesity. These rats typically show disease conditions including chronic pancreatitis and pancreatic endocrine disorders.18,26 A new model rat for diabetes was established recently by crossing rats carrying the Leprfa obesity gene with wild-type WBN/Kob rats, yielding a fa/fa congenic strain.1 The obesity gene (Leprfa) is a spontaneous mutation derived from Zucker-fatty rats that leads to dysfunction of the leptin receptor. Rats homozygous for this gene are obese, resistant to insulin, and hyperinsulinemic.4,16,32 Male WBN/Kob-Leprfa rats (hereafter referred to as fa/fa rats) represent a new animal model in which the animals spontaneously develop diabetes in addition to endogenous insulin resistance. Compared with the parental strains, fa/fa rats are characterized by an earlier onset of diabetes and more severe pancreatic complications.1,2 Our previous investigations have revealed that fa/fa rats present with hyperinsulinemia at a prediabetic stage as a compensatory response to insulin resistance, but these rats show high blood glucose levels because of a difficulty in maintaining blood insulin concentrations as a consequence of declining pancreatic β-cell function associated with advancing age.14In the current study, to further validate fa/fa rats as a T2DM model, we investigated the effects of a GLP1 analog in fa/fa rats with hyperglycemia (age, 7 to 11 wk). We used liraglutide, a human GLP1 analog, which has been shown to be clinically effective in T2DM patients.9,11  相似文献   

15.
The isomer-specific effects of conjugated linoleic acid (CLA) on hepatic steatosis were assessed in fa/fa Zucker rats, a model for insulin resistance and the metabolic syndrome. Eight weeks of feeding trans-10,cis-12 CLA significantly improved glucose tolerance without changing body weight or visceral adipose mass. The trans-10,cis-12 isomer was also associated with reduced liver lipid content, improved liver function and reduced inflammation; these effects were not observed in rats fed the cis-9,trans-11 CLA isomer. Reduced liver lipid content did not correlate with activation of AMP-activated protein kinase or suppressed activation of sterol-regulatory element binding protein-1, two key regulators of hepatic lipid metabolism. Interestingly, rats fed cis-9,trans-11 CLA had fewer cytoplasmic lipid droplets in hepatocytes compared to rats fed control diet, but these droplets were larger in size. Conversely, fa/fa rats fed the trans-10,cis-12 CLA isomer had greater numbers of hepatic lipid droplets that were smaller in size, resulting in overall lower total lipid within these droplets. Changes in lipid droplets were associated with lower hepatic levels of PERILIPIN-2 (formerly known as adipophilin) in rats fed trans-10,cis-12 CLA, whereas amounts of other members of the PERILIPIN family of lipid droplet proteins were unaffected by dietary CLA. However, CLA isomers differentially affected the subcellular localization of these proteins. Treatment of H4IIE rat hepatoma cells with CLA isomers neither prevented nor reversed, but rather induced cytoplasmic lipid droplet formation, suggesting that the anti-steatotic effects of trans-10,cis-12 CLA are likely indirect and potentially mediated via increased lipid utilization by peripheral tissues.  相似文献   

16.
1. The effect of insulin upon glucose transport and metabolism in soleus muscles of genetically obese (fa/fa) and heterozygote lean Zucker rats was investigated at 5–6 weeks and 10–11 weeks of age. Weight-standardized strips of soleus muscles were used rather than the intact muscle in order to circumvent problems of diffusion of substrates. 2. In younger obese rats (5–6 weeks), plasma concentrations of immunoreactive insulin were twice those of controls, whereas their circulating triacylglycerol concentrations were normal. Insulin effects upon 2-deoxyglucose uptake and glucose metabolism by soleus muscles of these rats were characterized by both a decreased sensitivity and a decrease in the maximal response of this tissue to the hormone. 3. In older obese rats (10–11 weeks), circulating concentrations of insulin and triacylglycerols were both abnormally elevated. A decrease of 25–35% in insulin-binding capacity to muscles of obese rats was observed. The soleus muscles from the older obese animals also displayed decreased sensitivity and maximal response to insulin. However, at a low insulin concentration (0.1m-i.u./ml), 2-deoxyglucose uptake by muscles of older obese rats was stimulated, but such a concentration was ineffective in stimulating glucose incorporation into glycogen, and glucose metabolism by glycolysis. 4. Endogenous lipid utilization by muscle was calculated from the measurements of O2 consumption, and glucose oxidation to CO2. The rate of utilization of fatty acids was normal in muscles of younger obese animals, but increased in those of the older obese rats. Increased basal concentrations of citrate, glucose 6-phosphate and glycogen were found in muscles of older obese rats and may reflect intracellular inhibition of glucose metabolism as a result of increased lipid utilization. 5. Thus several abnormalities are responsible for insulin resistance of muscles from obese Zucker rats among which we have observed decreased insulin binding, decreased glucose transport and increased utilization of endogenous fatty acid which could inhibit glucose utilization.  相似文献   

17.
We recently characterized DahlS.Z-Leprfa/Leprfa (DS/obese) rats, derived from a cross between Dahl salt-sensitive rats and Zucker rats, as a new animal model of metabolic syndrome (MetS). Although the phenotype of DS/obese rats is similar to that of humans with MetS, the pathophysiological and metabolic characteristics in each cell type remain to be clarified. Hence, the establishment of induced pluripotent stem cells (iPSCs) derived from MetS rats is essential for investigations of MetS in vitro. Reports of rat iPSCs (riPSCs), however, are few because of the difficulty of comparing to other rodents such as mouse. Recently, the advantage of using mesenchymal stromal cells (MSCs) as a cell source for generating iPSCs was described. We aimed to establish riPSCs from MSCs in adipose tissues of both DS/obese rats and their lean littermates, DahlS.Z-Lepr+/Lepr+ (DS/lean) rats using lentivirus vectors with only three factors Oct4, Klf4, and Sox2 without c-Myc. The morphology, gene expression profiles, and protein expression of established colonies showed embryonic stem cell (ESCs)-like properties, and the differentiation potential into cells from all three germ layers both in vitro and in vivo (teratomas). Both riPSCs became adipocytes after induction of adipogenesis by insulin, T3, and dexamethasone. Real-time PCR analysis also revealed that both riPSCs and the adipose tissue from DS/obese and DS/lean rats possess similar expression patterns of adipocyte differentiation-related genes. We succeeded in generating riPSCs effectively from MSCs of both DS/obese and DS/lean rats. These riPSCs may well serve as highly effective tools for the investigation of MetS pathophysiology in vitro.  相似文献   

18.
R Bazin  D Eteve    M Lavau 《The Biochemical journal》1984,221(1):241-245
GDP binding to brown-adipose-tissue mitochondria of obese Zucker-rat (fa/fa) pups aged 2-14 days was significantly less than in lean control rats. Scatchard analysis in 10-day-old pups suggests that there was a large decrease in GDP-binding sites. However, a significant increase in fat content in brown adipose tissue of 2-day-old pre-obese pups raised the question of the sequential order and causal relationship between these two derangements.  相似文献   

19.
20.
We previously reported that serotonergic activity was reduced in the ventromedial hypothalamic nucleus (VMN) of obese vs. lean male Zucker rats. To verify that this reduction was associated with genotype rather than gender, we measured monoamines and their major metabolites in hypothalamic nuclei of ll-week-old female lean (Fa/Fb) and obese (fa/fb) Zucker rats. In addition, since the thermic response to cold is reported to differ between lean and obese rats, some rats were also exposed to 9° or 22° C for 2h to determine if cold exposure altered hypothalamic monoaminergic activity. As in males, levels of 5-hydroxyindoleacetic acid [5-HIAA; major metabolite of serotonin (5-HT)] and the ratio of 5-HIANS-HT were lower in the VMN of obese vs. lean females (P = 0.008, 0.001, respectively). S-HIANS-HT was also reduced in the paraventricular (PVN) and suprachiasmatic nuclei (SCN) of the obese compared to the lean females. Cold exposure significantly stimulated brown fat mitochondria1 GDP binding in lean but not obese rats. Similarly, levels of norepinephrine, dopamine (DA), 5-HIAA, and 5-HT in the PVN, and 5-HIAA in the SCN increased in cold-exposed lean but not obese rats. In contrast, VMN and preoptic 3,4-dihydroxyphenylacetic acid (DOPAC; major metabolite of DA) increased in the cold-exposed obese but not lean animals. We conclude that: (1) the blunted peripheral response to cold in obese vs. lean Zucker rats is accompanied by altered hypothalamic monoaminergic activity, the physiological role of which needs further evaluation; and 2) depressed VMN serotonergic activity is associated with the obese genotype (fa/fa) rather than gender and as such may contribute to the reduced sympathetic and enhanced parasympathetic outflow from the VMN .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号